你在这里

王伟良

职  称: 副教授、硕士生导师
电子邮件:wangwl2@mail.sysu.edu.cn
个人主页:https://www.webofscience.com/wos/author/rid/E-6084-2011  
        http://www.scopus.com/authid/detail.url?authorId=16044270800
                  https://www.researchgate.net/profile/Weiliang_Wang3
                  http://orcid.org/0000-0002-8330-9913​

                  https://space.bilibili.com/522770881 

负责的《电磁学》在线课程网址:

    https://xueyinonline.com/detail/240689702 (学银在线)

    https://www.xuetangx.com/course/sysu0702bt1751/19402523 (学堂在线)

    https://coursehome.zhihuishu.com/courseHome/1000107998#teachTeam (智慧树网)

    https://www.icourse163.org/course/SYSU-1471074165 (中国大学MOOC)

主要经历: 

学习经历
2004年9月-2009年6月bat365在线平台网站理论物理博士(导师:李志兵教授)
2000年9月-2004年6月bat365在线平台网站物理学本科
2011年7月-2011年8月美国杜克大学访问学者(导师:杨伟涛教授)
2006年7月-2007年2月新加坡南洋理工大学交换生(导师:李长明教授)

Education

PhD in Theoretical Physics, Sun Yat-sen University (China), 2009 (Supervisor: Prof. Zhibing Li)

BA in Physics, Sun Yat-sen University (China), 2004

Visiting scholar, Duke University (US) 2011.7-2011.8 (Supervisor: Prof. Weitao Yang)

Visiting student, Nanyang Technological University (Singapore), 2006.7-2007.2 (Supervisor: Prof. Changming Li)

学科方向: 

所在学科:理论物理
研究方向:多尺度计算方法、第一性原理计算、声子极化激元、拉曼张量、场致电子发射理论、半导体缺陷理论、计算物理、计算材料学

欢迎有兴趣的本科生(修完量子力学、修完或正在修固体物理)加入合作科研。

Research interests: First principle calculation, phonon polariton, Raman tensor, field electron emission theory, doping stability of semiconductors, computational physics, computational material science.

主要兼职: 

全国高等学校电磁学研究会常务理事

中国核学会计算物理分会理事

Frontiers in Materials》(影响因子:3.9)副编辑,并在下面两个专刊担任专刊编辑:

    (1)"Electronic Properties, Vibrational Properties and Optical Properties of Van der Waals 2D Crystals”专刊编辑

    (2)"Spotlight on China - Materials Science"专刊编辑

Crystals》(影响因子:2.6) 专刊 "Advances in Polaritons" 客座编辑

为以下期刊审过稿:

Journal of Nuclear Materials, Journal of Alloys and Compounds, International Journal of Modern Physics B, Journal of Applied Physics, Modern Physics Letters B, Physics Letters A, Physica E, ACS Applied Nano Materials, Chinese Physics B, 物理学报, Carbon, Journal of Electron Spectroscopy and Related Phenomena, Journal of Magnetism and Magnetic Materials, Journal of Raman Spectroscopy, Journal of Physical Chemistry, Nanomaterials, Semiconductor Science and Technology, Materials, Journal of Physical Chemistry Letters, Applied Sciences, Surfaces and Interfaces, 
Journal of Physics and Chemistry of Solids, Materials Today Communications, Advanced Optical Materials, Materials Today Advances, Molecules, Materials Science & Engineering B, Physica Status Solidi, Crystals, Physica Scripta, Physica B, Chemical Physics Letters, Nano Seletc

代表论著: 

[89] Chunshan He and Weiliang Wang*,  Bulk Pentagon Carbon Allotrope and its Properties, 块体五边形碳同素异形体及其性质, Computational Materials Science, 246 (2025) 113421.

https://doi.org/10.1016/j.commatsci.2024.113421

[88] Yu Zhang, Zhiman Zhang, Weiliang Wang, Shaolin Zhang and Haiming Huang*, Quantum-mechanical understanding on structure dependence of image potentials of single-walled boron nitride nanotubes, Chinese Physics B, 33 (2024) 128501.

https://doi.org/10.1088/1674-1056/ad8071

[87] Shuai Zhang, Yiyun Ling, Yu Zhang, Weiliang Wang, Shaolin Zhang*, Haiming Huang*, Tuning the work functions via topology and halogen element adsorbates: A first-principles investigation on MBene nanoribbons, Materials Science and Engineering: B, 305 (2024) 117421.
https://doi.org/10.1016/j.mseb.2024.117421

[86] Peng Huang, Fangrong Qin, Deyu Kong, Xuekun Yang, Ziping zheng, Songjie Deng, Weiliang Wang, Haiming Huang*, Shaolin Zhang*, Enhanced room temperature ammonia sensing using Ti2VC2T Double-Transition-Metal MXenes: Experimental and theoretical insights, Chemical Physics Letters, 843 (2024) 141233.

https://doi.org/10.1016/j.cplett.2024.141233

[85] Meiqi Li, Zhibing Li, Huanjun Chen and Weiliang Wang*, Phonon pseudoangular momentum in α-MoO3, α-MoO3中的声子赝角动量, Nanomaterials, 14 (2024) 607.

https://doi.org/10.3390/nano14070607

[84] Yue Fang, Huanjun Chen, Zhibing Li and Weiliang Wang*, Hyperbolic phonon polaritons and wave vector direction dependent dielectric tensors in anisotropic crystals, 各向异性晶体中的双曲声子极化激元与依赖于波矢方向的介电函数张量, Journal of Physical Chemistry C, 128 (2024) 7359. (Supplementary Cover 内封面文章)

https://doi.org/10.1021/acs.jpcc.4c01183

[83] Deyu Kong, Peng Huang, Fangrong Qin, Jun Liu, Jiayi Lin, Yubin Lin, Haiming Huang, Weiliang Wang, Chuang Han*, Shaolin Zhang*, Exploring monolayer Ta4C3Tx MXene for quick ammonia detection at room temperature, Materials Letters, 363 (2024) 136250.

https://doi.org/10.1016/j.matlet.2024.136250

[82] Zhicheng Li, Yu Zhang, Zhongbin Pan,* Xu Fan, Peng Li, Haiming Huang,* Weiliang Wang,  Weidong Chen, Jinjun Liu and Weiping Li*, Optimizing the gradient of electric field distribution and inhibiting charge injection in multilayer dielectric films for high capacitive performance, Journal of Materials Chemistry A, 12 (2024) 3616.
https://doi.org/10.1039/D3TA06816A

[81] Maoqiao Xiang, Zihan Shen, Jie Zheng, Miao Song, Qiya He, Yafeng Yang, Jiuyi Zhu, Yuqi Geng, Fen Yue, Qinghua Dong, Yu Ge, Rui Wang, Jiake Wei, Weiliang Wang, Haiming Huang, Huigang Zhang*, Qingshan Zhu*, Chuanfang John Zhang, Gas-phase synthesis of Ti2CCl2 enables an efficient catalyst for lithium-sulfur batteries, The Innovation, 5 (2024) 100540.

https://doi.org/10.1016/j.xinn.2023.100540

[80] Zhicheng Li, Yu Zhang, Zhongbin Pan*, Xu Fan, Hao Wang, Peng Li, Haiming Huang*, Weiliang Wang, Jinjun Liu and Jiwei Zhai*, Superior capacitive performances achieved in wide HOMO-LUMO gap cyanoethyl cellulose nanocomposites via forming built-in electric field, Journal of Materials Chemistry C, 11 (2023) 16623.

https://doi.org/10.1039/D3TC03590E

[79] Hualei Sun, Liang Qiu, Yifeng Han, Enkui Yi, Junlong Li, Mengwu Huo, Chaoxin Huang, Hui Liu, Manrong Li, Weiliang Wang, Dao-Xin Yao, Benjamin A. Frandsen, Bing Shen*, Yusheng Hou*, Meng Wang*,  Coexistence of zigzag antiferromagnetic order and superconductivity in compressed NiPSe3, Materials Today Physics, 36 (2023) 101188.

https://doi.org/10.1016/j.mtphys.2023.101188

[78] Delong Li, # Na Han, # Hao Chen, Jiaqi Zhu, Youning Gong, Qiaoliang Bao, Weiliang Wang*, Yupeng Zhang*, Guo Ping Wang*, Manipulating the self-trapped excitons in the lead iodide/hexagonal boron nitride van der Waals heterostructures, 碘化铅六方氮化硼范德华异质结构中的自陷态激子操控, Laser & Photonics Reviews, 17 (2023) 2300309.

https://doi.org/10.1002/lpor.202300309

[77] Haiming Huang*, Mingquan Ding, Yu Zhang, Shuai Zhang, Yiyun Ling, Weiliang Wang* and Shaolin Zhang*, How organic switches grafting on TiO2 modifies the surface potentials: theoretical insights, RSC Advances, 13 (2023) 15148.

https://doi.org/10.1039/D3RA00537B

[76] Kang Lei, Haiming Huang, Xu Jia Liu, Weiliang Wang, Kai Guo, Ren Kui Zheng, and Han Li*, Ultra-Low Lattice Thermal Conductivity Enables High Thermoelectric Properties in Cu and Y Codoped SnTe via Multi-Scale Composite Nanostructures, ACS Sustainable Chem. Eng., 11 (2023) 7541.

https://doi.org/10.1021/acssuschemeng.3c00929

[75] Hualei Sun, Liang Qiu, Yifeng Han, Yunwei Zhang, Weiliang Wang, Chaoxin Huang, Naitian Liu, Mengwu Huo, Lisi Li, Hui Liu, Zengjia Liu, Peng Cheng, Hongxia Zhang, Hongliang Wang, Lijie Hao, Man-Rong Li, Dao-Xin Yao, Yusheng Hou, Pengcheng Dai, and Meng Wang*, Exchange field enhanced upper critical field of the superconductivity in compressed antiferromagnetic EuTe2, Communications Physics, 6 (2023) 40.

http://dx.doi.org/10.1038/s42005-023-01155-7

[74] Haiming Huang, Huijun Liu, Mingquan Ding, Weiliang Wang* and Shaolin Zhang*, Polarization-resolved and helicity-resolved Raman spectra of monolayer XP3 (X=Ge and In), 单层GeP3、InP3 的偏振拉曼和旋光拉曼, Physical Chemistry Chemical Physics, 25 (2023) 2366.

https://doi.org/10.1039/d2cp03925g

[73] Zelin Ma, Jun Ge*, Wanjun Chen, Xucheng Cao, Shanqing Diao, Haiming Huang*, Zhiyu Liu, Weiliang Wang, and Shusheng Pan*, Analog Tunnel Memory Based on Programmable Metallization for Passive Neuromorphic Circuits, ACS Applied Materials & Interfaces, 14 (2022) 47941.

https://doi.org/10.1021/acsami.2c14809

[72] Mingquan Ding, Huijun Liu, Hongtai Jiang, Mingde Huang, Xuexin Tan, Yanghai Li, Weiliang Wang, Shaolin Zhang, Haiming Huang*, Raman spectrum of MXene Ti2C under planar symmetrical strain: First-principles calculations, Journal of Raman Spectroscopy, 53 (2022) 1915.

https://doi.org/10.1002/jrs.6432

[71] Yiwen Yin(本科生:尹奕雯), Huanjun Chen, Weiliang Wang* and Haiming Huang*, Polarization-Resolved and Helicity-Resolved Raman Intensity of Monolayer and Bilayer β-InSe, 单层和双层硒化铟的偏振拉曼和旋光拉曼,  Journal of Physical Chemistry C, 126 (2022) 11219.

https://doi.org/10.1021/acs.jpcc.2c02941

[70] Lu Cheng, Yanming Zhu, Weiliang Wang and Wei Zheng*, Strong Electron–Phonon Coupling in β-Ga2O3: A Huge Broadening of Self-Trapped Exciton Emission and a Significant Red Shift of the Direct Bandgap, Journal of Physical Chemistry Letters, 13 (2022) 3053.

https://doi.org/10.1021/acs.jpclett.2c00682

[69] Guowei Chen, Min Guo, Xiaojie Li, Weiliang Wang, Fengjuan Liu, Ce Ning, Guangcai Yuan, Jun Chen, Shaozhi Deng, Chuan Liu*, Drain Current Drop in Oxide Semiconductor Thin-Film Transistors: The Mechanisms and A Solution, IEEE Transactions on Electron Devices, 69 (2022) 2430.

https://doi.org/10.1109/TED.2022.3162811

[68] Chunshan He and Weiliang Wang*, Tetragonal-structure germanene van der Waals 2D crystal and its Raman spectra, 四角结构锗范德华二维晶体及其拉曼光谱, Applied Physics A, 128 (2022) 363.

https://doi.org/10.1007/s00339-022-05492-2

[67] Kun Yan, Zhibing Li* and Weiliang Wang*, Distinguishing Different Edge Structures of Graphene Nanoribbons with Raman Spectra, Studied by First-Principles Calculations, 用拉曼光谱分辨石墨烯纳米带不同边缘结构的第一性原理计算, Journal of Raman Spectroscopy, 53 (2022) 1033. 封面文章

https://doi.org/10.1002/JRS.6336

[66] Weiliang Wang*, Editorial: Electronic Properties, Vibrational Properties and Optical Properties of Van der Waals 2D Crystals a section of the journal Frontiers in Materials, 《材料前沿》专刊《范德华二维晶体的电子性质、振动性质、光学性质》编辑总结, Frontiers in Materials, 9 (2022) 843290.

https://doi.org/10.3389/fmats.2022.843290

[65] Chuanyu Zhang, Zhibing Li and Weiliang Wang*, Critical thermodynamic conditions for the formation of p-type β-Ga2O3 with Cu doping, 铜掺杂形成p型β-Ga2O3的临界热力学条件, Materials, 14 (2021) 5161.

https://doi.org/10.3390/ma14185161

[64] Haiming Huang, Weiliang Wang*, and Shaolin Zhang*, Theoretical assessment of Raman spectra on MXene Ti2C: from monolayer to bilayer, 碳化钛的拉曼光谱理论研究:从单层到双层, Physical Chemistry Chemical Physics, 23 (2021) 19884.

https://doi.org/10.1039/D1CP03117A

[63] Hualei Sun, Cuiqun Chen, Yusheng Hou, Weiliang Wang, Yu Gong, Mengwu Huo, Lisi Li, Jia Yu, Wanping Cai, Naitian Liu, Ruqian Wu, Dao-Xin Yao and Meng Wang*, Magnetism variation of the compressed antiferromagnetic topological insulator EuSn2As2, SCIENCE CHINA Physics, Mechanics & Astronomy, 64 (2021) 118211.

https://doi.org/10.1007/s11433-021-1760-x

[62] Taoyan Mao, Haiming Huang, Dantong Liu, Xiaoqin, Shang, Weiliang Wang and Liming Wang*, Novel cationic gemini ester surfactant as an efficient and eco-friendly corrosion inhibitor for carbon steel in HCl solution, Journal of Molecular Liquids, 339 (2021) 117174.
https://doi.org/10.1016/j.molliq.2021.117174

[61] Ximiao Wang, Zebo Zheng, Ningsheng Xu, Weiliang Wang*, Huanjun Chen*, and Shaozhi Deng*, A nano-imaging study of graphene edge plasmons with chirality-dependent dispersions, 石墨烯边缘有手性依赖的色散关系的等离激元的纳米成像研究, Advanced Optical Materials, 9 (2021) 2100207. (Cover 封面文章)
http://doi.org/10.1002/adom.202100207

[60] Muqian Wen#, Xuexian Chen#, Zebo Zheng, Shaozhi Deng, Zhibing Li, Weiliang Wang* and Huanjun Chen*, In-plane anisotropic Raman spectroscopy of Van der Waals α-MoO3, 范德瓦尔斯α型三氧化钼的面内各向异性拉曼光谱, Journal of Physical Chemistry C, 125 (2021) 765. (Supplementary Cover 内封面文章)

http://dx.doi.org/10.1021/acs.jpcc.0c09178

[59] Chunshan He and Weiliang Wang*, Vibrational properties and Raman spectra of 2D Octagon-structure Nitrogen, 二维八角结构氮的振动性质和拉曼光谱, Journal of Raman Spectroscopy, 52 (2021) 626.

https://doi.org/10.1002/jrs.6059

[58] Jun Ge*, Haiming Huang, Zelin Ma, Weilong Chen, Xucheng Cao, Huaheng Fang, Jianfeng Yan, Zhiyu Liu, Weiliang Wang and Shusheng Pan*, A sub-500 mV monolayer hexagonal boron nitride based memory device, Materials & Design, 198 (2021) 109366.

https://doi.org/10.1016/j.matdes.2020.109366

[57] Zhanhong Lei(本科生:雷展宏), Weiliang Wang* and Juncong She, Polarization-resolved Raman spectra of α-PtO2, α-PtO2的偏振拉曼光谱, Chinese Physics B, 30 (2021) 047102.

https://doi.org/10.1088/1674-1056/abccb5

[56] Chunshan He and Weiliang Wang*, 2D Octagon-Structure Carbon and Its Polarization Resolved Raman Spectra, 一种新的碳同素异形体(二维八角结构碳)及其偏振拉曼光谱, Nanomaterials, 10 (2020) 2252.

https://doi.org/10.3390/nano10112252

[55] Yanming Zhu, Wei Zheng*, Weiliang Wang, Siqi Zhu, Linxuan Li, Lu Cheng, Mingge Jin, Ying Ding and Feng Huang, Raman tensor of layered black phosphorus, 层状黑磷的拉曼张量, PhotoniX, 1 (2020) 17.

https://doi.org/10.1186/s43074-020-00017-7

[54] Yanming Zhu,  Wei Zheng*,  Weiliang Wang,  Siqi Zhu,  Lu Cheng,  Linxuan Li,  Zeguo Lin,  Ying Ding,  Mingge Jin and  Feng Huang, Raman tensor of layered black arsenic, 层状黑砷的拉曼张量, Journal of Raman Spectroscopy, 51 (2020) 1324.

https://doi.org/10.1002/jrs.5922

[53] Somayeh Saboori, Weiliang Wang*, Zhibing Li* and Juncong SheRaman spectra of MXenes Zr2X(X=C and N), 碳化锆和氮化锆的拉曼光谱, Nanotechnology, 31 (2020) 405708.
https://doi.org/10.1088/1361-6528/ab9a74

[52] Mingge Jin, Wei Zheng*, Ying Ding, Yanming Zhu, Weiliang Wang, and Feng Huang, Raman Tensor of Van der Waals MoSe2, 范德瓦尔斯硒化钼的拉曼张量, The Journal of Physical Chemistry Letters, 11 (2020) 4311.
https://doi.org/10.1021/acs.jpclett.0c01183

[51] ZIYUE RAO, WENYI LIANG, HAIMING HUANG, JUN GE*, WEILIANG WANG AND SHUSHENG PAN*, High sensitivity and rapid response ultraviolet photodetector of a tetragonal CsPbCl3 perovskite single crystal, Optical Materials Express, 10 (2020) 1374.
https://doi.org/10.1364/OME.388429

[50] M. G. Jin, W. Zheng*, Y. Ding, Y. M. Zhu, W. L. Wang* and F. Huang*, Raman tensor of WSe2 via angle-resolved polarized Raman spectroscopy, 使用角分辨偏振拉曼光谱研究硒化钨的拉曼张量, J. Phys. Chem. C, 123 (2019) 29337.
https://doi.org/10.1021/acs.jpcc.9b09166

[49] Chunshan He and Weiliang Wang*, Electron Affinity and Ionization Potential of 2D Octagon-structure Nitrogen under strain, 二维八角结构氮在有应变时的电子亲和势和电离势, Modern Physics Letters B, 33 (2019) 1950371.
http://dx.doi.org/10.1142/S0217984919503718

[48] Mingge Jin, Zhibing Li, Feng Huang and Weiliang Wang*, Electronic and optical properties of CsPb2Br5: A first-principles study, 溴铅铯的电子与光学性质, Modern Physics Letters B, 33 (2019) 1950266.
http://dx.doi.org/10.1142/S021798491950266X

[47] Somayeh Saboori, Zexiang Deng, Zhibing Li*, Weiliang Wang*, and Juncong She, β‑As Monolayer: Vibrational Properties and Raman Spectra, 单层β型砷的振动性质和拉曼光谱, ACS Omega, 4 (2019) 10171.
http://dx.doi.org/10.1021/acsomega.9b00712

[46] Haiming Huang, Weiliang Wang and Liming Wang*, Theoretical Assessment of Wettability on Silane Coatings: from Hydrophilic to Hydrophobic, Physical Chemistry Chemical Physics, 21 (2019) 8257.
http://dx.doi.org/10.1039/C9CP01232J

[45] Hao Wang#, Jinxiu Wen#, Weiliang Wang#, Ningsheng Xu, Pu Liu, Jiahao Yan, Huanjun Chen* and Shaozhi Deng*, Resonance Coupling in Heterostructures Composed of Silicon Nanosphere and Monolayer WS2: A Magnetic-Dipole-Mediated Energy Transfer Process, 由硅纳米球和单层二硫化钨组成的异质结构中的共振耦合:磁偶极矩介导的能量转移过程, ACS Nano, 13 (2019) 1739.
http://dx.doi.org/10.1021/acsnano.8b07826

[44] Zexiang Deng, Zhibing Li, Weiliang Wang* and Juncong She, Vibrational Properties and Raman Spectra of Pristine and Fluorinated Blue Phosphorene, 蓝磷和氟化蓝磷的振动性质和拉曼光谱, Physical Chemistry Chemical Physics, 21 (2019) 1059. (Inside Back Cover 内封底文章)
http://dx.doi.org/10.1039/C8CP05699D

[43] Weiliang Wang, Weitao Yang* and Zhibing Li*, Field Electron Emission Images Far Away from A Semi-infinitely Long Emitter: A Multi-scale Simulation,长度不限的发射体远处的场发射像的多尺度模拟, Journal of Physical Chemistry C, 122 (2018) 27754. (Supplementary Journal Cover 内封面文章)
http//dx.doi.org/10.1021/acs.jpcc.8b08910

[42] Yanming Zhu, Jingyuan Li, Xu Ji, Titao Li, Mingge Jin, Xinwen Ou, Xiaomei Shen, Weiliang Wang* and Feng Huang*, Unintentionally Doped Hydrogen Removal Mechanism in Li Doped ZnO,锂掺杂氧化锌中非有意掺杂氢的去除机制, AIP Advances, 8 (2018) 105014.
http://dx.doi.org/10.1063/1.5052407
[41] Zhaojun Zhang, Yanming Zhu, Weiliang Wang, Wei Zheng, Richeng Lin, Xubiao Li, Hao Zhang, Dingyong Zhong and Feng Huang*, Aqueous Solution Growth of millimeter-sized Non-Green-Luminescent Wide Bandgap Cs4PbBr6 Bulk Crystal, Crystal Growth & Design, 18 (2018) 6393.
http://dx.doi.org/10.1021/acs.cgd.8b00817

[40] Mingge Jin, Zhibing Li, Feng Huang, Yu Xia, Xu Ji and Weiliang Wang*, Critical conditions for the formation of p-type ZnO with Li doping, 锂掺杂形成p型氧化锌的临界条件, RSC Advances, 8 (2018) 30868.
http://dx.doi.org/10.1039/c8ra04811h

[39] Zhaojun Zhang, Wei Zheng, Weiliang Wang, Dingyong Zhong and Feng Huang*, Anisotropic temperature-dependence of optical phonons in layered PbI2, Journal of Raman Spectroscopy, 49 (2018) 775.
http://dx.doi.org/10.1002/jrs.5341

[38] Wanxing Lin, Jiesen Li, Weiliang Wang, Shi-Dong Liang and Dao-Xin Yao*, Electronic Structure and Band Gap Engineering of Two-Dimensional Octagon-Nitrogene, Scientific Reports, 8 (2018) 1674.                    
http://dx.doi.org/10.1038/s41598-018-19496-7

[37] Zhaojun Zhang, Yanming Zhu, Weiliang Wang, Wei Zheng, Richeng Lin and Feng Huang*, Growth, characterization and optoelectronic applications of pure-phase large-area CsPb2Br5 flake single crystals, Journal of Materials Chemistry C, 6 (2018) 446.
http://dx.doi.org/10.1039/c7tc04834c

[36] Zexiang Deng, Huanjun Chen, Zhibing Li and Weiliang Wang*, Ballistic Electronic and Thermal Conductance of Monolayer and Bilayer Black Phosphorus, 单层、双层黑磷的弹道电导、热导, Current Applied Physics, 17 (2017) 214.
http://dx.doi.org/10.1016/j.cap.2016.11.023

[35] Jinxiu Wen, Hao Wang, Weiliang Wang, Zexiang Deng, Chao Zhuang, Yu Zhang, Fei Liu, Juncong She, Jun Chen , Huanjun Chen* , Shaozhi Deng*, and Ningsheng Xu*, Room-Temperature Strong Light–Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals, Nano Letters, 17 (2017) 4689.
http://dx.doi.org/10.1021/acs.nanolett.7b01344

[34] Zebo Zheng, Weiliang Wang, Teng Ma, Zexiang Deng, Yanlin Ke, Runze Zhan, Qionghui Zou, Wencai Ren, Jun Chen, Juncong She, Yu Zhang, Fei Liu, Huanjun Chen*, Shaozhi Deng*, and   Ningsheng Xu, Chemically-doped graphene with improved surface plasmon characteristics: an optical near-field study, Nanoscale, 8 (2016) 16621.
http://dx.doi.org/10.1039/C6NR04239B

[33] Lihua Li, Zexiang Deng, Lili Yu, Zhaoyong Lin, Weiliang Wang, Guowei Yang*, Amorphous transitional metal borides as substitutes for Pt cocatalysts for photocatalytic water splitting, Nano Energy, 27 (2016) 103.
http://dx.doi.org/10.1016/j.nanoen.2016.06.054

[32] Jie-Sen Li, Wei-Liang Wang and Dao-Xin Yao*, Band Gap Engineering of Two-Dimensional Nitrogene, Scientific Reports, 6 (2016) 34177.
http://dx.doi.org/10.1038/srep34177

[31] Zexiang Deng, Zhibing Li and Weiliang Wang*, Electron Affinity and Ionization Potential of Two-dimensional Honeycomb Sheets: A First Principle Study,二维原子晶体的电子亲和势、电离势, Chemical Physics Letters, 637 (2015) 26. 
http://dx.doi.org/10.1016/j.cplett.2015.07.054

[30] Zexiang Deng, Juncong She, Zhibing Li, Weiliang Wang* and Qiang Chen, Field Evaporation of Grounded Arsenic Doped Silicon Clusters,接地砷掺杂硅团簇的场蒸发, Surface Review and Letters, 22 (2015) 1550069. 
http://dx.doi.org/10.1142/S0218625X15500699

[29] Yu Zhang, Jason Lee, Wei-Liang Wang, Dao-Xin Yao*, Two-dimensional octagon-structure monolayer of nitrogen group elements and the related nano-structures, Computational Materials Science, 110 (2015) 109.
http://dx.doi.org/10.1016/j.commatsci.2015.08.008

[28] Jason Lee, Wen-Chuan Tian, Wei-Liang Wang, Dao-Xin Yao*, Two-Dimensional Pnictogen Honeycomb Lattice: Structure, On-Site Spin-Orbit Coupling and Spin Polarization, Scientific Reports, 5 (2015) 11512.
http://dx.doi.org/10.1038/srep11512

[27] Yifeng Huang, Zexiang Deng, Weiliang Wang, Chaolun Liang, Juncong She*, Shaozhi Deng and Ningsheng Xu, Field-Induced Crystalline-to-Amorphous Phase Transformation on the Si Nano-Apex and the Achieving of Highly Reliable Si Nano-Cathodes, Scientific Reports, 5 (2015) 10631
http://dx.doi.org/10.1038/srep10631

[26] Haiming Huang, Zhibing Li*, H. J. Kreuzer and Weiliang Wang*, Disintegration of graphene nanoribbons in large electrostatic fields,强电场下石墨烯纳米带的瓦解, Phys. Chem. Chem. Phys., 16 (2014) 15927.
http://dx.doi.org/10.1039/C4CP01545B
[25] Jingkun Chen, Zhibing Li* and Weiliang Wang, Manifesting pseudo-spin polarization of graphene with field emission image, Journal of Applied Physics, 115 (2014) 053701.
http://dx.doi.org/10.1063/1.4863726
[24] Yu Xia, Weiliang Wang, Zhibing Li* and H. Juergen Kreuzer, Adsorption and desorption of hydrogen on graphene with dimer conversion, Surf. Sci., 617 (2013) 131.
http://dx.doi.org/10.1016/j.susc.2013.07.018
[23] Chunshan He, Weiliang Wang*, Potential barrier and band structure of closed edge graphene,闭合边缘石墨烯的势垒和能带结构, J. Appl. Phys., 114 (2013) 074305.
http://dx.doi.org/10.1063/1.4818611
[22] Haiming Huang, Zhibing Li, and Weiliang Wang*, Electronic and magnetic properties of oxygen patterned graphene superlattice,氧掺杂石墨烯超晶格的电、磁性质, J. Appl. Phys., 112 (2012) 114331.
http://dx.doi.org/10.1063/1.4769743
[21] Weiliang Wang and Zhibing Li*, Graphene with the secondary amine-terminated zigzag edge as a line electron emitter,仲胺中断的石墨烯锯齿型边缘作为线电子发射源, Applied Physics A, 109 (2012) 353.
http://dx.doi.org/10.1007/s00339-012-7180-3
[20] Chunshan He, Zhibing Li and Weiliang Wang*, Work function of boron carbie: A DFT calculation,碳化硼的功函数, Surface Review and Letters, 19 (2012) 1250040.
http://dx.doi.org/10.1142/S0218625X12500400
[19] Yuan Huang, Weiliang Wang, Juncong She*, Zhibing Li, Shaozhi Deng, Correlation between carbon–oxygen atomic ratio and field emission performance of few-layer reduced graphite oxide,少层还原氧化石墨烯的氧含量与其场发射性能的关系, Carbon, 50 (2012) 2657.
http://dx.doi.org/10.1016/j.carbon.2012.02.036
[18] Haiming Huang, Zhibing Li, Juncong She and Weiliang Wang*, Oxygen density dependent band gap of reduced graphene oxide,还原氧化石墨烯的带隙随氧含量的变化, J. Appl. Phys., 111 (2012) 054317.
http://dx.doi.org/10.1063/1.3694665
[17] W. Wang, J. Shao, Z. Li*, The exchange-correlation potential correction to the vacuum potential barrier of graphene edge,交换关联势对石墨烯真空势垒的修正, Chemical Physics Letters 522 (2012) 83.
http://dx.doi.org/10.1016/j.cplett.2011.12.002
[16] W. L. Wang and Z. B. Li*, Potential barrier of graphene edges,石墨烯边缘的势垒, J. Appl. Phys. 109 (2011) 114308.
http://dx.doi.org/10.1063/1.3587186
[15] X. Z. Qin, W. L. Wang and Z. B. Li*, Electric potential of a metallic nanowall between cathode and anode planes,阴阳极间金属纳米墙的电势, J. Vac. Sci. Technol. B, 29 (2011) 031802.
http://dx.doi.org/10.1116/1.3574391
[14] W. L. Wang, X. Z. Qin, N. S. Xu and Z. B. Li*, Field electron emission characteristic of graphene,石墨烯的场致电子发射特性, Journal of Applied Physics, 109 (2011) 044304.
http://dx.doi.org/10.1063/1.3549705
[13] X. Z. Qin, W. L. Wang, N. S. Xu, Z. B. Li* and R. G. Forbes, Analytical treatment of cold field electron emission from a nanowall emitter, including quantum confinement effects, Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 467 (2011) 1029.
http://dx.doi.org/10.1098/rspa.2010.0460
[12] H. M. Huang, Z. B. Li and W. L. Wang*, Image potential of C60: A density functial theory calculation,C60的镜像势, J. Vac. Sci. Technol. B, 29 (2011) 021802.
http://dx.doi.org/10.1116/1.3566075
[11] W. L. Wang, Y. Xia, N. S. Xu and Z. B. Li*, Spontaneous Breaking of Rotation Symmetry in the Edge States of Zigzag Carbon Nanotubes,锯齿型碳纳米管边缘态旋转对称性的自发破缺, Journal of Physical Chemistry C, 113 (2009) 17313-17320.
http://dx.doi.org/10.1021/jp9044868
[10] Weiliang Wang, Ningsheng Xu and Zhibing Li*, Field-dependent electron emission patterns from individual SWCNTs simulated with a multi-scale algorithm,用多尺度算法模拟单根单壁碳纳米管场致电子发射像随电场的变化, Ultramicroscopy, 109 (2009) 1295.
http://dx.doi.org/10.1016/j.ultramic.2009.05.013
[9] C. S. He, W. L. Wang, S. Z. Deng, N. S. Xu, Z. B. Li*, G. H. Chen and J. Peng, Anode Distance Effect on Field Electron Emission from Carbon Nanotubes: A Molecular/Quantum Mechanical Simulation, Journal of Physical Chemistry A, 113 (2009) 7048.
http://dx.doi.org/10.1021/jp810212g
[8] C. S. He, W. L. Wang, G. H. Chen and Z. B. Li*, Image potential effect on field emission from arrays of carbon nanotubes, Acta Physica Sinica, 58 (2009) S241.
[7] W. L. Wang, J. Peng, G. H. Chen, S. Z. Deng, N. S. Xu and Z. B. Li*, Image potentials of single-walled carbon nanotubes in the field emission condition,单壁碳纳米管在场致电子发射时的镜像势, Journal of Applied Physics, 104 (2008) 034306.
http://dx.doi.org/10.1063/1.2964109
[6] J. Peng, Z. B. Li*, C. S. He, G. H. Chen, W. L. Wang, S. Z. Deng, N. S. Xu, X. Zheng, G. H. Chen, C. J. Edgcombe and R. G. Forbes, The roles of apex dipoles and field penetration in the physics of charged, field emitting, single-walled carbon nanotubes, Journal of Applied Physics, 104 (2008) 014310.
http://dx.doi.org/10.1063/1.2946449
[5] G. H. Chen, W. L. Wang, J. Peng, C. S. He, S. Z. Deng, N. S. Xu and Z. B. Li*, Screening effects on field emission from arrays of (5,5) carbon nanotubes: Quantum mechanical simulations, Physical Review B, 76 (2007) 195412.
http://dx.doi.org/10.1103/PhysRevB.76.195412
[4] G. H. Chen, Z. B. Li*, J. Peng, C. S. He, W. L. Wang, S. Z. Deng, N. S. Xu, C. Y. Wang, S. Y. Wang, X. Zheng, G. H. Chen and T. Yu, Atomic decoration for improving the efficiency of field electron emission of carbon nanotubes, Journal of Physical Chemistry C, 111 (2007) 4939-4945.
http://dx.doi.org/10.1021/jp066316w
[3] Q. L. Bao, S. J. Bao, C. M. Li, X. Qi, C. T. Pan, J. F. Zang, W. L. Wang and D. Y. Tang, Lithium insertion in channel-structured beta-AgVO: In situ Raman study and computer simulation, Chemistry of Materials, 19 (2007) 5965.
http://dx.doi.org/10.1021/cm071728i
[2] Zhi-Bing Li* and Wei-Liang Wang, Analytic solution of charge density of single wall carbon nanotube under conditions of field electron emission,单壁碳纳米管在场致电子发射时电荷密度的解析解, Chinese Physics Letters, 23 (2006) 1616.
http://dx.doi.org/10.1088/0256-307X/23/6/072
[1] S. Z. Deng, Z. B. Li, W. L. Wang, N. S. Xu*, Zhou Jun, X. G. Zheng, H. T. Xu, Chen Jun and J. C. She, Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic substrate, Applied Physics Letters, 89 (2006) 23118.
http://dx.doi.org/10.1063/1.2220481