主持人:王雪华 教授
报告简介:In the field effect transistor (FET), electric field is adopted to control physical performance via tuning the carrier density. Such controllability through an electrostatic doping greatly promotes the development of research and industry for semiconductors. However, conventional metal-insulator-semiconductor (MIS) FET can only sustain very limited carrier density, and cannot meet further demands, especially in exploring high temperature superconductivity. Consequently, researchers attempt to seek for FET with new gate dielectric, such as the electric double layer FET (EDL-FET) based on liquid ions to break this bottleneck. In this talk, we report high temperature superconductivity with an onset above 40 K can be achieved in FeSe thin flake with Tc less than 10 K by tuning carrier with this EDL-FET technique. We also report on a novel FET device using solid ion conductor (SIC) as a gate dielectric, developed by our group, to overcome the inherent drawbacks of both MIS- and EDL-FET devices. Based on this SIC-FET technique, we achieved an optimal Tc of 46.6 K in FeSe thin flakes. In contrast to the EDL-FET based on liquid ion dielectric, SIC-FET can tune carrier concentration in a wider range, so that the complete phase diagram of FeSe superconductor can be mapped out. A superconductivity- insulating state transition is observed. Two new structural phases of LixFe2Se2 are obtained due to the Li intercalation driven by electrical field. We will talk about the gate-induced superconductivity- insulator transition in (Li,Fe)OHFeSe and MoS2. A superconductor-ferromagnetic insulator transition is induced by modifying the structure by SIC-FET in (Li,Fe)OHFeSe/S. Fe is replaced by Li, and Fe moves to the interstitial sites and is ordered, giving rise to ferromagnetism. A insulator-superconductivity is induced by SIC-FET with structure transition from 1T’ phase to 1T’’’ phase in MoS2
报告人简介:陈仙辉,1963年3月生于湖南省湘潭。1992年毕业于中国科学技术大学物理系,获理学博士学位,现为中国科学技术大学教授,中国科学院强耦合量子材料实验室主任,中国科学院院士,第三世界科学院院士。曾先后作为洪堡学者和访问学者在德国卡尔斯鲁厄研究中心和斯图加特马普固体物理研究所、日本高等研究院(北陆)、美国休斯敦大学德克萨斯超导研究中心以及新加坡国立大学访问工作。
陈仙辉主要从事超导和量子材料的探索及其物理研究,在铁基超导体研究中突破麦克米兰极限;发展了一种新超导体合成方法,获得零电阻温度43K的新型铁硒类超导体-锂铁氢氧铁硒;发展了固体离子场效应技术,在FeSe薄层中实现大范围的载流子浓度调控,获得高温超导相和观察到超导-绝缘态转变,开辟了利用固态离子导体门电压技术探索超导电性的研究方向;与合作者成功实现黑磷晶体场效应管,开辟了继石墨烯之后又一个量子功能材料领域。迄今已在Nature(6篇)、Science(2篇)、Nature子刊(20篇)、Physical Review Letters (40篇)和PRX (6篇)等刊物发表SCI论文400余篇,SCI 引用近30000次,单篇最高引用4480余次。
2008年获教育部和李嘉诚基金会―长江学者成就奖,2009年获中国物理学会―叶企孙奖,2009年获香港求是科技基金会―求是杰出科技成就集体奖,2013年获国家自然科学一等奖,2015年获国际超导材料最高奖Bernd T. Matthias奖,2017年获首届全国创新争先奖章,2017年获何梁何利基金科学与技术进步奖,2017年获安徽省重大科技成就奖,2019年获第三世界科学院(TWAS)物质科学奖。