你在这里

学术报告(11月1日)

报告人: 
丁峰 教授(香港理工大学)
题目: 
The Mechanisms of Graphene Chemical Vapor Deposition (CVD) Growth
地点: 
光电材料与技术国家重点实验室一楼讲学厅
时间: 
2016年11月1日(星期二)上午10:00

主持人:姚道新教授

 

欢迎广大师生参加!

 

摘要:

The epitaxial CVD growth on catalyst surface is the most promising method of synthesizing high quality, large area graphene. A complete growth process includes (i) the nucleation of graphene domains, (ii) the expansion the domain and (iii) the coalescence of the graphene domains into a macroscopic graphene layer. In this talk, I’m going to present our recent theoretical studies on (i) and (ii) in details and (iii) briefly. Besides, our collaborations with experimental research groups on realizing the fast growth of large area single crystalline graphene will be discussed as well.

During the nucleation stage on most catalyst surface, C chains that have up to 8-13 C atoms are found very stable and a transition from sp1 one dimensional (1D) C chain to sp2 two dimensional (2D) graphene island is necessary to initiate the graphene nucleation. [1-2] The metal step was found to be the preferred site of graphene nucleation on catalyst surface and the medium sized C cluster, C21, showed exceptional stability on the catalyst surface; [3-4]

Edge construction is crucial for graphene in vacuum, while graphene edge on catalyst prefers to maintain its pristine form. [5] While the naked graphene edge on Cu(111) surface tends to be terminated by Cu add atoms and the special passivation contribute to the fast growth rate of graphene armchair edge; [6]

Three modes of graphene CVD growth, on terrace, near metal step, and the embedded growth are proposed and the graphene epitaxy growth or the determination of graphene’s orientation on various catalyst are carefully studied; [7-8]

Other related topics--the formation of point defects in graphene CVD growth and the mechanism of defect healing,[9] the role of hydrogen in graphene CVD growth on Cu surface,[10] and the detailed mechanism of graphene domain evolution during the growth-etching-regrowth procedure on Pt surface [11] will also be discussed.

Together with our experimental collaborators, we have realized the growth of inch sized single crystal graphene wafer [12], the ultra-fast growth of large area graphene in a few seconds [13] and the mechanism of multi-layer graphene CVD growth on the Pt surface [14].

References:
[1] J. F. Gao, et. al., J. Phys. Chem. C, 115 (36), 17695, (2011)
[2] J. F. Gao, et. al., J. Am. Chem. Soc., 133(13), 5009, (2011)
[3] Q. H. Yuan, et. al., J. Am. Chem. Soc., 133(40), 16072, (2011)
[4] Q. H. Yuan, et. al., J. Am. Chem. Soc., 134, 2970-2975, (2012)
[5] J. F. Gao, et. al., J. Am. Chem. Soc, 134, 6204-6209, (2012)
[6] H. Shu, et. al., ACS Nano, 6, 3243-3250 (2012)
[7] X. Y. Zhang, et. al., J. Phys. Chem. Lett., 3, 2822, (2012)
[8] Q. H. Yuan, et. al., submitted to JACS
[9] L. Wang, et. al., J. Am. Chem. Soc., 135, 4476 (2013)
[10] X. Y. Zhang, et. al., J. Am. Chem. Soc., 136, 3040, (2014)
[11] T Ma, et. al., PNAS, 110, 20386 (2013)
[12] T. R. Wu et. al., Nat. Mat., 15, 43 (2016)
[13] X. Z. Xu et. al., Nat. Nano., doi:10.1038/nnano.2016.132 (2016)
[14] X. J. Wang et. al., Nat. Comm., doi:10.1038/ncomms13256, (2016)References: W. Huang, E. Taylor, C. Kallin, Phys. Rev. B 90, 224519 (2014); Y. Tada, W. Nie, M. Oshikawa, Phys. Rev. Lett. 114, 195301 (2015).

报告人简介

Prof. Feng Ding obtained his Bs, Ms and PhD degrees from Huazhong University of Science and Technology, Fudan University and Nanjing University in 1993, 1996 and 2002, respectively. Then he was a Postdoctoral Research Fellow in Gothenburg University and Chalmers University in Sweden from 2003 to 2005. From 2005, he joined Prof. Boris I. Yakobson’s research group of Rice University as a Research Scientist until the end of 2008. He joined the Institute of Textile and Clothing of Hong Kong Polytechnic University as an Assistant Professor in 20109 and became a tenured associate professor from July of 2013. He will move to the center of multidimensional carbon materials (CMCM) in Ulsan National Institute of Science and Technology (UNIST) to build a theory group under the support of the Institute of Basic Science (IBS) Scheme of the Republic of Korea from 2017. Dr. Ding’s research interests mainly focus on the growth mechanism, properties and applications of various carbon materials (fullerene, carbon nanotubes and graphene). Dr. Ding has published more than 160 SCI papers and these publications. These publications have been cited by more than 4500 times until now and his personal h-index is 37 now.