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The existence of surface electromagnetic waves in the dielectric-metal interface is due to the sign change of
real parts of permittivity across the interface. In this work, we demonstrate that the interface constructed by two
semi-infinite photonic crystals with different signs of the imaginary parts of permittivity also supports surface
electromagnetic eigenmodes with real eigenfrequencies, protected by PT symmetry of the loss-gain interface.
Using a multiple scattering method and full wave numerical methods, we show that the dispersion of such
interface states exhibits unusual features such as zigzag trajectories or closed loops. To quantify the dispersion,
we establish a non-Hermitian Hamiltonian model that can account for the zigzag and closed-loop behavior for
arbitrary Bloch momentums. The properties of the interface states near the Brillouin zone center can also be
explained within the framework of effective medium theory. It is shown that turning points of the dispersion
are exceptional points (EPs), which are characteristic features of non-Hermitian systems. When the permittivity
of photonic crystal changes, these EPs can coalesce into higher-order EPs or anisotropic EPs. These interface
modes hence exhibit and exemplify many complex phenomena related to exceptional point physics.
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I. INTRODUCTION

Interface states commonly exist in quantum systems and
classical wave systems. A well-known example is the surface
plasmon polaritons [1,2], which are surface waves traveling
along a dielectric-metal interface due to a change in sign of the
real part of permittivity across the interface. Photonic crystal
(PC) systems also have surface modes and, in some cases, the
existence of the boundary modes can be explained using topo-
logical concepts [3–9]. This prior topological-based research
on interface states in photonic crystal systems was mainly
focused on Hermitian systems. However, recent works show
that boundary modes can also be found in non-Hermitian
systems [10–17]. For example, surface states can be localized
at the gain-loss interface in PT -symmetric systems [10,11].

In this work, we study the formation of interface states
in a non-Hermitian PC with a PT -symmetric interface, in
which one side of the PC has gain and the other side has
loss. We find that such a system carries interface states with
real eigenvalues. The dispersions of these interface states are
rather unusual, as they form zigzag trajectories or closed
loops. Exceptional points (EPs) [18–24], which are character-
istic features in non-Hermitian systems, appear at the turning
points of the dispersions of the interface states. EPs are branch
point singularities in parameter spaces, at which eigenvalues
and eigenvectors coalesce simultaneously. At EPs, the matrix
Hamiltonian is defective, and the coalescing eigenvectors are
not linearly independent [25], which is different from degen-
erate points in Hermitian systems. As the system parameters
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change, we found that the EPs can coalesce into higher-order
EPs [26–30] or anisotropic EPs [31–33]. Besides, we find that
in the limit of large gain/loss, one band of interface states with
real eigenvalues always persists.

We study the interface states using two different computa-
tion approaches (numerical package COMSOL and a multiple
scattering method) and two different boundary conditions
(periodic and open). These computation details are described
in Secs. II and III. In Sec. IV, we attempted to give a simple
explanation to the rather exotic dispersions using effective
medium theory (EMT), which works well near the Brillouin
zone center. In Sec. V, we formulate a non-Hermitian Hamil-
tonian model for the interface states that works for a general
value of the Bloch momentum and the model shows clearly
that there are EPs in the band of interface states. In Sec. VI,
we show that EPs can coalesce into higher-order EPs and
anisotropic EPs as system parameters change. In the last
section, we give a conclusion.

II. PT -SYMMETRIC INTERFACE STATES IN PHOTONIC
CRYSTALS

We consider a PC comprising of two different two-
dimensional (2D) square lattice PCs, as illustrated in Fig. 1(a).
In this work, we focus on the transverse magnetic (TM)
polarization (Ez polarization). Within the primitive unit cell
with a lattice constant a, the rod has a radius of rc and a rel-
ative permittivity εc = εr ± iγ embedded in air. The relative
permeability μ is 1.0 everywhere. The positive (negative) sign
of γ indicates the rod is a lossy (gain) medium. There is a
PT -symmetric interface at x = 0 separating cylinders with
gain on one side and lossy cylinders on the other side. The
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FIG. 1. (a) Schematic picture of an interface structure constructed by two semi-infinite 2D PCs consisting of dielectric cylinders with a
radius of rc and a relative permittivity εc = εr ± iγ embedded in air with a relative permittivity εb = 1.0, and the lattice constant is a. The
relative permeability μ of both media is 1.0. (b) The band structures of a Hermitian (γ = 0) 2D PC with parameters rc = 0.2a, εc = 12 along
�-X -M-� directions. (c) The projected band structures along the ky direction.

cylinders (blue) of the left semi-infinite PC (x < 0) are active
with gain (εc = εr − iγ ), while the cylinders (orange) at the
right semi-infinite PC (x > 0) are lossy (εc = εr + iγ ).

At the Hermitian limit γ = 0, the PT -symmetric interface
disappears, and this system becomes a simple Hermitian 2D
PC with the same material parameters everywhere. The bulk
band structure and projected band diagrams along the ky direc-
tion of the Hermitian PC with parameters rc = 0.2a, εc = 12
are calculated using COMSOL as shown in Figs. 1(b) and 1(c),
respectively. It has been shown theoretically and demonstrated
experimentally that in 2D Hermitian PCs possessing bands
with a Dirac-like cone dispersion at k = 0, even a small
perturbation of the relative permittivity εr is sufficient to
create interface states [7,8,34,35]. The underlying physics for
the existence of an interface state is related to the geometric
phase of the bulk bands. In this work, we want to study the
emergence of interface states upon the introduction of an
imaginary part to the relative permittivity. More specifically,
we create an interface by introducing PT -symmetric non-
Hermiticity into this Hermitian 2D PC as depicted in Fig. 1(a).

In numerical calculations, the number of column layers of
the semi-infinite PC is truncated to a finite number N . One
method of terminating the far ends of the semi-infinite PC is
to apply open boundary conditions, such as perfectly matched
layers (PML) or scattering boundary along the x direction.
Thus, the PT -symmetric PC is periodic along the y direction
but is finite along the x direction. Another method to study the
interface states is to apply periodic boundary conditions also
along the x direction. Figure 2(a) gives a schematic picture of
such a lattice, with a unit cell containing N = 3 cylinders with
gain and N = 3 cylinders with loss. Both boundary conditions
give the same result in the limit of large N , showing that in
this particular case the results are not dependent on boundary
conditions even though the system is non-Hermitian [36]. The
periodic condition gives us a more heuristic understanding on
the formation of the interface bands from the point view of
PT symmetry, which has been extensively studied in prior
research.

We first calculate the band structure of the PT -symmetric
PC with periodic boundary conditions. As shown in Fig. 2(a),
the unit cell (marked by black dashed rectangle) of the lattice
contains N active cylinders (orange) together with N lossy

cylinders (blue). The gray shadow region of Figs. 2(b)–2(d)
marks the projected bands of Hermitian PC with parameters
rc = 0.2a, εc = 12, which is the same as the projected band
shown in Fig. 1(c). We then calculate the projected bands of
PT -symmetric PC with parameters εc = 12 ± i using COM-
SOL. In Figs. 2(b)–2(d), we plot the real parts of eigenfre-
quencies of PC, and the number N of gain/loss cylinders in
the unit cell is labeled in the figure. The imaginary parts of the
eigenfrequency of eigenstates marked by blue circles are zero,
and those by red are nonzero. For PT -symmetric systems,
the eigenstates with purely real eigenvalues are said to be
in the exact PT -symmetry phase, and those with complex-
conjugate-pairs eigenvalues are said to be in the broken PT -
symmetry phase [37]. From Fig. 2(b), we see that when we
introduce the PT -symmetric non-Hermiticity into Hermitian
supercells of the 2D PC, some eigenstates (marked by red
circles) acquire imaginary parts and go into the broken PT -
symmetry phase. When the supercell is small (e.g., N = 3),
most of the eigenstates (marked by blue circles) are purely
real, and these eigenstates are still in the exact PT -symmetry
phase. When we increase the number of cylinders in the unit
cell N to 8, an increasing number of the eigenstates go into the
broken PT -symmetry phase as depicted in Fig. 2(c). When
the number of cylinders in the unit cell N = 15 as shown in
Fig. 2(d), nearly all of the eigenstates in the whole Brillouin
zone are in the broken PT -symmetry phase, except for one
band of states with a zigzag dispersion which remains in the
exact PT -symmetry phase. In Fig. 2(e), we plot one of these
states in PT -symmetry exact phase [marked by dark star in
Fig. 2(d)], and find that the electric field distribution |E| is
localized at the interface x = {−15a, 0, 15a} separating the
gain/loss cylinders, i.e., the PT -symmetric interface. The
interface modes lie inside the continuum of the real-valued
bulk modes when γ = 0 (gray shadow region), but when
γ �= 0, the continuum becomes complex-valued. Therefore,
in a certain sense these interface modes are bound states in
the continuum with complex-valued energy spectra. This is
different from the conventional bound states in continuum,
where the continuum is real-valued [10,38].

We emphasize that in going from Figs. 2(b) to 2(d), the
material parameters and in particular the imaginary parts
of the permittivity remain unchanged. The only change is
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FIG. 2. (a) Schematic picture of PC of which the unit cell (dashed rectangle) has N = 3 active cylinders (orange) and N = 3 lossy cylinders
(blue). Periodic conditions are applied to x and y directions. The projected bands of PC with parameters rc = 0.2a and εc = 12 ± i along the
ky direction are calculated using COMSOL and the numbers of cylinders in one unit cell are (b) N = 3, (c) N = 8, (d) N = 15, respectively. The
gray shadow region marks the projected bands of Hermitian case (γ = 0). The real parts of the eigenfrequencies for states in PT exact phase
[Im(ω)a/2πc = 0] and PT broken phase [Im(ω)a/2πc �= 0] are plotted by blue and red circles, respectively. (e) The electric field distribution
|E| of an interface state [labeled by a black star (d)] at the frequency Re(ω)a/2πc = 0.47 and kya/2π = 0.3, kxa/2π = 0 .

the number of cylinders in the unit cell. There are both
localized interface states and extended bulk states in this
PT -symmetric PC. For a fixed γ = 1, as N increases, the
bulk states undergo a phase transition from the exact PT
regime to the broken PT regime. For bulk states at different
Bloch ky, the threshold value of N for the phase transition
point is different. When the bulk states are in the broken
PT regime, the field distribution is either concentrated in
the lossy medium or in the gain medium. If the bulk state
eigenfields are mainly concentrated in the left gain domain,
the eigenfrequencies have negative imaginary parts. If the bulk
states are mainly localized in the right lossy domain, the
eigenfrequencies have positive imaginary parts. However, the
fields of interface states are always localized at the loss-gain
interface, and the field distributions are symmetric about the
interface even for large value of N . Accordingly, the interface
states persist in the exact PT regime and have purely real
eigenfrequencies. By studying how the eigenstates change
as the number of cylinders N in the unit cell increases, we
distinguish the localized interface states and extended bulk
states based on whether their eigenvalues are real numbers.

III. PT -SYMMETRIC INTERFACE STATES USING
MULTIPLE SCATTERING METHOD WITH OPEN

BOUNDARY CONDITION

When the column number N is large enough, the results
calculated with periodic condition should be the same with

open boundary conditions. In this section, we calculate the
band structure using a multiple scattering (MS) method with
open boundary conditions, and we are expected to observe the
interface states plotted in Fig. 2(d) calculated using periodic
boundary conditions. We use a Green’s function method to
build a scattering problem of cylinders arranged in a square
lattice grid, the details of which are given in Appendix A.
In the TM polarization (the electric field is along the axes of
cylinders), the dominant excitations of the cylinders at low
frequencies are the out-of-plane electric monopole and two
in-plane magnetic dipoles. The scattering problem for plane
waves incident on the PC can be written as

M(ω, ky)� loc = � inc, (1)

where � inc represents external incident waves and � loc rep-
resents total local fields. The band structure of a PC can be
obtained by solving an eigenvalue problem in the absence of
incident field

M(ω, ky )� loc = 0. (2)

Frequencies ω for which Eq. (2) has nontrivial solutions for
a given Bloch ky are zeros of matrix M(ω, ky ), which can be
found by locating the zeros of its determinant

det[M(ω, ky)] = 0. (3)

As the calculation of the determinant becomes numerically
unstable if the matrix is large, we adopt the numerically stable
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FIG. 3. Color-map plot of Min{|eig[M(ω, ky )]|} in log-10 scales
as functions of real frequency ω and real Bloch wave vector ky

for non-Hermitian PC with parameters εc = 12 ± i. The number of
column layers of the PC is truncated to N = 15. Interface states
calculated by COMSOL with periodic and PML boundary conditions
applied on the x direction are plotted by blue circles and cyan
triangles, respectively. The left panel is the enlargement of the white
dashed rectangle in the right panel.

approach to solve the equation

Min{|eig[M(ω, ky)]|} = 0, (4)

where Min{|eig[M(ω, ky)]|} is the minimal-modulus eigen-
value of the matrix M(ω, ky). Therefore, Eq. (4) defines the
dispersion curves ω(ky) for photons propagating through the
periodic structure. The MS method is very useful as it can
handle non-Hermitian systems and is compatible with various
types of boundary conditions.

Using the MS method, we calculate the interface states of a
PT -symmetric PC with εc = 12 ± i. The column number of
the unit cell of the PC is truncated to N = 15, and scattering
boundary conditions applied in the x direction. In Fig. 3,
we plot the values of Min{|eig[M(ω, ky)]|} in log-10 scale,
in the parameter plane (ω, ky), where ω and ky are both
real numbers. The value Min{|eig[M(ω, ky)]|} of the states
with complex eigenfrequencies cannot be zero at real-valued
(ω, ky) plane. Therefore, the dark orange lines, marking loca-
tions of Min{|eig[M(ω, ky)]|} → 0 represent interface eigen-
states with real eigenfrequencies. In the vicinity, the areas
marked by lighter colors (Min{|eig[M(ω, ky)]|} > 0) indicate
the bulk states with complex eigenfrequencies. Using the MS
method, we can locate the interface states with purely real
eigenfrequencies.

To verify the interface states obtained by MS method,
we also calculated the eigenstates by COMSOL, with PML
boundary conditions applied to the x direction, whereas a
periodic boundary condition is applied to the y direction for
each wave number ky. Using COMSOL, we pick the eigenstates
with real eigenvalues and plot them in Fig. 3 by cyan triangles.
We also plot the interface states calculated by COMSOL with
periodic conditions applied to the x directions by blue circles
in Fig. 2(d) in the same picture. We can see from Fig. 3 that
the results calculated by COMSOL using PML and periodic
boundary conditions agree well with the results calculated by
the MS method.

IV. EFFECTIVE MEDIUM THEORY

We now consider the interface states from the viewpoint
of effective medium theory (EMT). We will see whether an
effective medium description in the long-wavelength limit can

provide a simple heuristic picture to understand the formation
of interface states near the zone center. The effective pa-
rameters of non-Hermitian PCs can be obtained conveniently
using a boundary field averaging method [39]. To obtain
the effective parameters of the PC, we need to treat the PC
as a homogeneous medium. Assuming that a plane wave
propagates along the x direction with wave vector kx̂ and
polarization Ezẑ in a homogeneous medium, we define a wave
impedance

Z = Ez

Hy
= −ωμ

k
= − k

ωε
. (5)

For the inhomogeneous PC system with a micro-structure, we
define a corresponding average field ratio as

ZB =
∫

I EPC
z dy∫

I HPC
y dy

, (6)

where EPC
z and HPC

y are the eigenfield at the incident boundary
I of the unit cell. When using EMT, the frequency ω in Eq. (5)
should take real number because the effective parameters are
functions of real frequency. To obtain eigenfields EPC

z and
HPC

y , we use COMSOL to solve a complex-valued k(ω) vs
real-valued ω dispersion [40,41]. According to Eq. (5), the
effective permittivity and permeability are

εe = − k

ωε0ZB
, μe = − k

μ0ω
ZB. (7)

We first calculate the effective parameters εe and μe for the
right lossy semi-infinite PC with εc = εr + iγ . Therefore, the
effective parameters for the left active semi-infinite PC with
εc = εr − iγ are ε∗

e and μ∗
e . From the point of view of EMT,

the PT -symmetric PC illustrated in Fig. 1(a) can be treated
as a PT -symmetric homogenous slab with permittivity and
permeability like

ε(x) =
{
ε∗

e , x < 0,

εe, x > 0,
μ(x) =

{
μ∗

e , x < 0,

μe, x > 0.
(8)

Enforcing the continuity condition at the interface x = 0 for
the electric field, a modal solution bound at the gain-loss
interface can be written as [11]

Ez(x, y) = C exp(iβy)

{
exp(ik∗

x x), x < 0
exp (ikxx), x > 0 (9)

where C denotes a normalization constant, β is the propaga-
tion constant. We suppose the interface states are propagating
along the y direction without attenuation, which means that
β is a purely real number and, therefore, we obtain that
k2

x = εeμe(ω/c)2 − β2 for x > 0 and k∗2
x = ε∗

e μ
∗
e (ω/c)2 − β2

for x < 0. c is the speed of light in vacuum. From Maxwell’s
equation, we then calculate the tangential magnetic field

Hy(x, y) = −kx(x)

ωμ(x)
Ez(x, y). (10)

By enforcing its continuity at the interface, we obtain [42]

kx

μe
= k∗

x

μ∗
e

. (11)

To obtain states bounded at PT -symmetric interface, the
complex number kx should satisfy Im (kx ) > 0 to ensure that
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the electric field exponentially decays for x > 0. Accordingly,
we have Im (k∗

x ) < 0 for x < 0, which also ensures the electric
field exponentially decays away from the interface. We then
solve the dispersion relationship like

μe

μ∗
e

= kx

k∗
x

= i
√

β2 − εeμe(ω/c)2

−i
√

β2 − ε∗
e μ

∗
e (ω/c)2

, (12)

and obtain

β = ω

c

√
μeμ∗

e (−εeμ∗
e + ε∗

e μe )

μ2
e − (μ∗

e )2

= ω|μe|
c

√
1

2

(
ε′

μ′ − ε′′

μ′′

)
, (13)

where we have set μe = μ′ + iμ′′, εe = ε′ + iε′′.
Using Eq. (7), we calculate the effective parameters εe

and μe of the lossy PC with relative permittivity εc = 12 +
1.2i and εc = 12 + 1.6i. The results are plotted in Figs. 4(a)
and 4(c), respectively. The horizontal axes represent the real
parts or imaginary parts of the effective parameters. Using
the dispersion relation described by Eq. (13), we can cal-
culate the band dispersion of the interface states for the
PT -symmetric homogenous slab with effective parameters
described by Eq. (8). The dispersions are plotted in Figs. 4(b)
and 4(d) by cyan lines. The propagation constant β in the
effective homogeneous medium is the Bloch ky in the PC.
For comparison, we further calculate the band structure of
interface states near the Brillouin zone center using COMSOL

and plot the results in Figs. 4(b) and 4(d) by open blue circles,
which agree reasonably well with the cyan lines.

Since EMT is accurate in the long-wavelength limit, where
ky is a small number, we can give an analytical explanation to
the band diagrams of the interface states near the Brillouin
zone center. From Figs. 4(a) and 4(c), we see that μ′(ω)
goes from negative to positive as frequency increases, and
it becomes zero at a particular frequency, which we call
ωm. In Fig. 4, we denote the frequency ω = ωm satisfying
μ′(ωm) = 0 by blue dashed lines. It is shown by Eq. (13)
that ky → ∞ at frequency ω = ωm due to μ′(ωm) = 0, which
is depicted by the cyan lines in Figs. 4(b) and 4(d). From
Figs. 4(a) and 4(c), we can see that the imaginary parts
(denoted by asterisks) of the effective parameters are nearly
constant functions of frequency while the real parts are linear
functions of frequency. Therefore, near the Brillouin zone cen-
ter, we can write a reasonably good approximation that ε′ =
p(ω − ωe), μ′ = q(ω − ωm), and ε′′/μ′′ = ρ. p, q, and ρ

are all positive numbers, and ωe is the frequency satisfying
ε′(ωe) = 0. We label the frequency ω = ωe by red dashed
lines in Fig. 4. Then, Eq. (13) becomes

ky(ω) = ω|μe|
c

√
1

2

(
p

q

ω − ωe

ω − ωm
− ρ

)
. (14)

By setting ky(ω) = 0, we can solve the frequency ωβ satisfy-
ing ky(ωβ ) = 0 as

ωβ = ωe[1 − η(ωm/ωe )]

1 − η
, (15)

FIG. 4. Effective parameters εe, μe of non-Hermitian PC with
parameters (a) εc = 12 + 1.2i and (c) εc = 12.6 + 1.2i are plotted in
left panels. The band structure of interface states of PT -symmetric
PC with (b) εc = 12 ± 1.2i and (d) εc = 12.6 ± 1.2i are plotted in
right panels. The blue open circles in (b), (d) are calculated by
COMSOL with PML boundary conditions and the column number
of the semi-infinite PCs is truncated to N = 15. The cyan lines
denote the dispersion [Eq. (13)] of interface states of PT -symmetric
homogeneous slab with εe, μe. The frequencies ωe, ωm, and ωβ

are labeled by red dashed lines, blue dashed lines, and orange
dots, respectively. Two EPs SL

23 and SL
12 are marked by green dot

and yellow square, respectively. The vertical black dashed line
labels kya/2π = 0.05. The radius of the cylinders of the PC is
rc = 0.2a.

where η = ρq/p � 1 in the considered frequency range. In
Fig. 4, we label the frequency ωβ satisfying ky(ωβ ) = 0 by
orange dots

From Eq. (15), we see that if ωm > ωe, then we have ωe >

ωβ , which is the case illustrated in Figs. 4(a) and 4(b). On the
other hand, if ωm < ωe, we have ωe < ωβ , which is the case
illustrated in Figs. 4(c) and 4(d). The inversion of ordering
[ωm > ωβ in Fig. 4(b) while ωm < ωβ in Fig. 4(d)] leads to
a drastic change in the dispersion. The frequency range be-
tween ωm and ωβ is a band gap induced by quasilongitudinal
resonance. Hence, ωe, ωm, and ωβ , which are determined
by εr , govern the band structure’s pattern of the interface
states.

115412-5



CUI, DING, DONG, AND CHAN PHYSICAL REVIEW B 100, 115412 (2019)

V. NON-HERMITIAN HAMILTONIAN MODEL AND
EXCEPTIONAL POINTS OF THE INTERFACE STATES

In the above section, we study the dispersion of interface
states as a function of ky. In this section, we will formulate
a non-Hermitian Hamiltonian model of the interface states
as functions of εc = εr ± γ for a fixed ky [28,43]. For a 2D
PC of which the cylinders are uniform in the z direction
[ε(r) is independent of z coordinate], we consider the TM
polarization with electric fields only having z component
Ez(r). The wave vector k is parallel to the 2D x-y plane,
and the electromagnetic fields Ez(r), Hx(r), and Hy(r) are
also independent of the z coordinate. The eigenfrequency and
eigenstate of this 2D PC with TM polarization can be obtained
by solving the following equation [44]:[

∇2 +
(ω

c

)2
ε(r)

]
Ez(r) = 0, (16)

where ∇2 = ∂2x + ∂2y, and r denotes the 2D position vector
(x, y).

To calculate the eigenfrequencies of the interface states
of non-Hermitian PCs with material parameters ε(r), we
construct a model Hamiltonian using the Bloch states of the
interface bands of a PC with material parameters ε(0)(r) as the
bases. Here, ε(0)(r) is the relative permittivity of the original
PC, and ε(r) is the modified relative permittivity of the PC
under consideration. The relative permittivity of the original
PT -symmetric PC in Fig. 1(a) can be described as

ε(0)(r) =

⎧⎪⎨
⎪⎩

ε(0)
r − iγ (0) |r − ri j | < rc and x < 0,

ε(0)
r + iγ (0) |r − ri j | < rc and x > 0,

1 |r − ri j | > rc,

(17)
where ri j is the position vector of the rod’s center. |r − ri j | <

rc denotes the rod domain, and |r − ri j | > rc denotes the air
domain. Note that ε(0)(r) has imaginary parts and the system
is non-Hermitian.

The Bloch states for the interface states of PC with ε(0)(r)
can be expressed as E (0)

z,kn(r) = u(0)
kn (r)eik·r, where n denotes

the band index and k is the wave vector in the first Brillouin
zone. The periodic function u(0)

kn (r) and the corresponding
eigenfrequency ω

(0)
kn can be obtained from COMSOL. The Bloch

states of non-Hermitian PC should satisfy a biorthonormal
relationship as∫

d2r v
(0)∗
km′ (r)ε(0)(r)u(0)

km(r) = δm′m, (18)

where v
(0)
km′ (r) is the normalized left eigenfield and can be ob-

tained by the normalized right eigenfield at −k, i.e., v(0)∗
km (r) =

u(0)
−km(r) (See Appendix B).

To construct the model Hamiltonian for a PC with
a new permittivity ε(r), which has the same functional
form as Eq. (17), we express Bloch wave functions of
the new PC as Ez(r) = Ez,kn(r) = ukn(r)eik·r with ukn(r) =∑+∞

m=1 αn,kmu(0)
km(r). Substituting this expansion into Eq. (16),

we arrive at

∑
m

αn,km

{∇2
(
u(0)

km(r)eikr
)

+ε(r)
(ωkn

c

)2
u(0)

km(r)eikr

}
= 0. (19)

For the original PC with ε(0)(r), we know that

∇2(u(0)
km(r)eikr

) + ε(0)(r)

(
ω

(0)
km

c

)2

u(0)
km(r)eikr = 0. (20)

Then, Eq. (19) becomes

∑
m

αn,km

⎡
⎣ε(r)

(ωkn
c

)2

−ε(0)(r)
(

ω
(0)
km
c

)2

⎤
⎦u(0)

km(r)eikr = 0, (21)

where ωkn is eigenfrequency for PCs with ε(r). Multiplying
Eq. (21) by v

(0)∗
km′ (r) and integrating within a unit cell, we

obtain
+∞∑
m=1

αn,km(ε̄(0)(k))m′m
(
ω

(0)
km/c

)2

= (ωkn/c)2
+∞∑
m=1

αn,km(ε̄(k))m′m (22)

in which

(ε̄(0)(k))m′m =
∫

d2r v
(0)∗
km′ (r)ε(0)(r)u(0)

km(r), (23a)

(ε̄(k))m′m =
∫

d2r v
(0)∗
km′ (r)ε(r)u(0)

km(r). (23b)

Therefore, Eq. (22) can be rewritten as a generalized eigen-
vaule problem for a specific k as

H2 pkn = (ωkn/c)2H1 pkn, (24)

where pkn = (. . . αn,kn, . . . )T is the eigenstate. The ma-
trices in Eq. (24) are (H1)m′m = (ε(k))m′m and (H2)m′m =
δm′m(ω(0)

km/c)
2
. For convenience, we omit the subscript k for

simplicity and rewrite Eq. (24) as

H pn = Wn pn, (25)

where H = H−1
1 H2, and Wn = (ωn/c)2. From Eqs. (23) and

(24), we see that the model Hamiltonian is a function of ε(r)
for a fixed k = kyŷ. Therefore, using the eigenfunctions of
the interface states of a system with permittivity ε(0)(r) at a
specific ky as bases, we build a Hamiltonian model to calculate
a PC with new permittivity ε(r). This approach works well for
any value of ky.

Using the model Hamiltonian, we can analyze the disper-
sion of interface states as functions of the material parameters
γ and εr . We first consider the transition of the interface
band dispersion depicted in Figs. 4(b) and 4(d), in which εr

changes from 12 to 12.6. We calculate the interface states with
parameters ε(0)

r = 12.3 and γ (0) = 1.2 using COMSOL, and
focus on the three interface states with real eigenvalues at a
specific kya/2π = 0.05 [orange dashed lines in Fig. 5(a)]. We
use the eigenfunctions u(0)

kn (r) of these three interface states
as bases to build the Hamiltonian model shown in Eq. (25).
The Hamiltonian H is a 3 × 3 matrix function of εr and γ .
We fixed the non-Hermiticity at γ = γ (0) = 1.2, and calculate
the eigenvalues of the Hamiltonian H as a function of εr . The
real and imaginary parts of the eigenfrequencies are shown,
respectively, in Figs. 5(a) and 5(b) by solid lines. Ordered
from lower frequency to higher frequency, the first (lowest),
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FIG. 5. (a) Real parts and (b) imaginary parts of eigenfrequen-
cies of interface states (with a specific kya/2π = 0.05) as functions
of εr are plotted. The original parameters of the cylinders we used to
build the model are ε(0)

r = 12.3 and γ (0) = 1.2, which are denoted by
an orange dashed line. The first, second, and third bands calculated
by the Hamiltonian model are plotted by green, olive, and black solid
lines, respectively. The phase rigidities |rm| of the interface states as
a function of εr are plotted in (c). The open circles in (a) and (b) are
calculated by COMSOL with PML boundary conditions. The number
of column layers of the semi-infinite PCs is truncated to N = 15.
Blue circles represent states in exact PT -symmetry phase, while red
circles represent states in broken PT -symmetry phase.

second (middle), and third (highest) bands are denoted by
green, olive, and black lines, respectively. We also plot the
numerical results calculated directly using COMSOL with PML
boundary conditions by open circles. The blue circles denote
the states in exact PT -symmetry phase (the eigenvalues are
purely real) and the red circles denote the states in broken
PT -symmetry phase (the eigenvalues are complex-conjugate
pairs). The solid lines show excellent agreement with the open
circles, indicating the validity of our non-Hermitian 3 × 3
model Hamiltonian.

The second and third bands merge together at εr = 12.212
and form an EP marked by SL

23 (green dot) in Fig. 5(a). The
first band and the second band merge at εr = 12.423, and form
an EP marked by SL

12 (yellow square). The subscript index mn
of the symbols SL

23 and SL
12 denotes the index of bands forming

the EPs. Using the 3 × 3 Hamiltonian, we can analyze the
EPs in the εr parameter space in detail. The eigenstates of
the non-Hermitian Hamiltonian matrix become defective at
the EP, characterized by a vanishing phase rigidity which is

FIG. 6. (a), (c), (e) Real and (b), (d), (f) imaginary parts of
eigenfrequencies of interface states as functions of ky are calculated
by COMSOL with PML boundary conditions. The number of column
layers of the semi-infinite PCs is truncated to N = 15. The blue (red)
circles represent states in exact (broken) PT -symmetry phase. The
relative permittivities of the cylinders are (a), (b) εc = 12.34 ± 1.2i;
(c), (d) εc = 12.3553 ± 1.2i; and (e), (f) εc = 12.36 ± 1.2i. The
green dots, solid yellow square, and pink star labeled by SL

23, SL
12, and

β12 are EPs. The vertical black dashed line labels kya/2π = 0.05.

defined as rm = 〈vkm|ukm〉/〈ukm|ukm〉, where |ukm〉 and |vkm〉
are the right and left eigenstates [45]. We plot the phase
rigidity as a function of εr in Fig. 5(c). The vanishing phase
rigidities, rm → 0, also confirm the existence of the EPs.

Using the Hamiltonian model, we described the EPs in the
parameter space of εr for a fixed kya/2π = 0.05 in Fig. 5.
Now, we will show the turning points denoted by a green
dot and a yellow square in Figs. 4(b) and 4(d) are EPs in the
parameter space of ky. In Fig. 4(b), where εr = 12, the lowest
band emerges from the Brillouin zone center with a negative
group velocity and the middle and highest bands form an EP
SL

23. In Fig. 5, the EP SL
23 appears at εr = 12.212 meaning that

we can find an EP SL
23 at kya/2π = 0.05 for PC with εr =

12.212. Similarly, in Fig. 5 an EP SL
12 appears at εr = 12.423

meaning that we can find EP SL
12 at kya/2π = 0.05 for PC

with εr = 12.423. In Fig. 4(d), where εr = 12.6, the lower two
bands form an EP SL

12, and the highest band emerges from the
Brillouin zone center with a positive group velocity.

To better describe the movement of EPs in εr and ky

parameter spaces, in Fig. 6, we plot the interface bands of PC
with (a), (b) εc = 12.34 ± 1.2i, (c), (d) εc = 12.3553 ± 1.2i,
and (e), (f) εc = 12.36 ± 1.2i, respectively. From Figs. 6(a)
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FIG. 7. Real parts of eigenfrequencies of states as functions of
ky are calculated by COMSOL with PML boundary conditions for PC
with (a) εc = 12.3554 ± 1.2i, (b) εc = 12.3559 ± 1.2i. The number
of column layers of the semi-infinite PCs is truncated to N = 15. The
blue (red) circles represent states in exact (broken) PT -symmetry
phase. The yellow dot, yellow solid squares, yellow open diamond,
and pink star labeled by SL

23, SL
12, SN

12, and �123 are EPs.

and 6(c), we see that as εr increases, the middle band gets
closer to the lowest band and they merge together at εr =
12.3553. This touching point denoted by β12 is an anisotropic
EP, which we will discuss in the next section. As εr increases
further, as shown in Fig. 6(e), the EP SL

23 disappears and an
EP SL

12 formed by the lower two bands comes out from the
touching point β12. Figure 7 describes this process. We can
see that the touching point β12 first split into two EPs SN

12 and
SL

12, and then the EPs SN
12 and SL

23 coalesce into an order-3 EP
�123, where three bands coalesce [22]. In summary, Figs. 6
and 7 describe the transition from SL

23 to SL
12, and show that as

εr changes, the evolution of the interface bands is related to
the development of EPs.

VI. COALESCENCE OF EXCEPTIONAL POINTS

In the above section, we build a 3 × 3 non-Hermitian
Hamiltonian model to analyze the dispersion of interface
states of PT -symmetric photonic crystals as functions of the
material parameters εc, and describe the movement of EPs in
parameter space εr and ky. But, we did not take the change of
the non-Hermiticity γ into account. In this section, we expand
the parameter space and study systematically the evolution of
interface states as εr and γ changes. Interface bands calculated
using the MS method with open boundary conditions are
plotted in Fig. 8 for different parameters εc = εr ± iγ , with
εr varying from 11 to 13, and γ varying from 1 to 4. The
interface bands show zigzag or closed-loop dispersion that
cannot be seen in Hermitian systems. The turning points of
the bands are EPs which are labeled by the symbols SL

23, SL
12,

and SR
12 in the figure panels. In the following, we will show that

the evolution of the interface bands is closely associated with
the coalescence of the EPs as we change the parameters εr and
γ . Such coalescence behavior is further highlighted by tracing
EPs in the parameter space (ky, γ ), as shown in Fig. 9. The last
column of panels in Fig. 8 shows that when gain/loss becomes
large, one isolated band of interface states will always persist.

A. Formation of the order-3 EPs in εr = 11

In the first row of panels in Fig. 8, the real part of the
relative permittivity of the cylinders is fixed at εr = 11. As
shown in Fig. 8(a), where γ = 1, the band of interface states

FIG. 8. Color-map plot of Min{|eig[M(ω, ky )]|} in log-10 scale
as functions of real frequency ω and real Bloch wave number ky

for non-Hermitian PCs with different parameters εr and γ . The dark
orange lines denote the PT -symmetric interface states. The relative
permittivities of cylinders are labeled in the figure panels and the
number of column layers of the semi-infinite PCs is truncated to
N = 15. Different symbols labeled by SL

23, SL
12, and SR

12 are EPs.

starts from the Brillouin zone center and exhibits a zigzag
dispersion, turning around twice at EPs denoted by SL

23 and
SR

12. As we increase the non-Hermitian strength γ , the EPs SL
23

and SR
12 will get closer to each other and eventually disappear

as shown in Figs. 8(b) and 8(c). This process is also illustrated
in Fig. 9 by the blue line, which traces the movement of EPs

FIG. 9. The trajectories of EPs in the parameter space (ky, γ )
for PCs with different real parts of relative permittivity εr . Blue,
green, and purple lines represent PCs with εr = 11, εr = 12, and
εr = 13, respectively. Different symbols (dots, solid squares, open
triangles, and open diamonds) label the order-2 EPs (SL

23, SL
12, SR

12,
and SN

12). The pink stars denote the coalescence of EPs. EPs marked
by �123 are order-3 EPs. α12 and β12 are anisotropic EPs. The results
are calculated by COMSOL with PML boundary conditions and the
number of column layers of the semi-infinite PCs is truncated to
N = 15. The upper right inset is the enlargement of the black dashed
rectangle.
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FIG. 10. (a)–(c) Real parts and (d)–(f) imaginary parts of eigen-
frequencies of interface states as functions of ky are calculated by
COMSOL with PML boundary condition. The number of column
layers of the semi-infinite PCs is truncated to N = 15. The blue (red)
circles represent interface states in exact (broken) PT -symmetry
phase. The relative permittivities of the cylinders are (a), (d) εc =
11 ± 3.2i; (b), (e) εc = 11 ± 3.3i; and (c), (f) εc = 11 ± 3.4i. The
symbols labeled by SL

23, SR
12, and �123 are EPs.

in the parameter space (ky, γ ). We can see that as γ increases,
the EPs SL

23 marked by dots at small ky and EPs SR
12 marked

by open triangles at large ky get closer and eventually merge
into an order-3 EP labeled as �123 (marked by a pink star)
[27]. The EPs SL

23 and SR
12 are order-2 EPs, where two bands

coalesce. At the order-3 EP �123, three bands coalesce.
To further illustrate the formation of the order-3 EP �123,

we plot in Fig. 10 the interface bands calculated using COMSOL

with PML boundary conditions applied on the x direction. As
shown in Figs. 10(a) and 10(d), when εc = 11 ± 3.2i, there
are two typical order-2 EPs SL

23 (blue dot) and SR
12 (open

triangle) formed by two bands. The dispersion relations for
the real and imaginary branches are of the square-root form
near the EPs. As we increase the non-Hermiticity to γ = 3.3,
as shown in Figs. 10(b) and 10(e), the EPs SL

23 and SR
12 merge

into an order-3 EP �123, where three bands coalesce. The
EP �123 disappears upon a further increase in γ . As shown
in Figs. 10(c) and 10(f), when γ = 3.4, there is only one
interface state with real eigenvalues (blue open circles). Other
interface states (red open circles) will acquire larger and larger
imaginary parts and merge into the continuum of propagating
waves that are not localized at the gain-loss interface.

B. Formation of the anisotropic EPs in εr = 13

In the third row of panels in Fig. 8, the real part of the
relative permittivity of the cylinders is increased to ε = 13. In
Fig. 8(g), we see that the lower two bands form a closed loop,
with the minimum and maximum ky pinned by the EPs SL

12
and SR

12, respectively. From Figs. 8(g)–8(i), we observe that
when γ increases, the two EPs SL

12 and SR
12 of the loop tend to

approach each other and finally disappear. The disappearance
of the loop is described in Fig. 11. EPs SL

12 and SR
12 coalesce at

a specific ky point and form a new EP denoted by α12. We also

FIG. 11. (a)–(c) Real parts and (d)–(f) imaginary parts of eigen-
frequencies of interface states as functions of ky are calculated by
COMSOL with PML boundary condition. The number of column
layers of the semi-infinite PCs is truncated to N = 15. The blue (red)
circles represent interface states in exact (broken) PT -symmetry
phase. The relative permittivities of the cylinders are (a), (d) εc =
13 ± 2.31i; (b), (e) εc = 13 ± 2.3148i; and (c), (f) εc = 13 ± 2.32i.
The symbols labeled by SL

12, SR
12, and α12 are EPs.

plot the trace of EPs in the parameter space (ky, γ ) in Fig. 9
by purple line. As γ increases, the EPs SL

12 labeled by solid
squares and EPs SR

12 labeled by open triangles merge into a
new EP labeled by α12.

It is interesting to note that EP α12 is anisotropic [31].
When an anisotropic EP is approached from different di-
rections in the parameter space, it shows different singular
behaviors. As shown in Fig. 11(e), the imaginary parts of
the eigenfrequencies are linear functions of ky near the EP
α12. In Figs. 12(a)–12(c), we plot the eigenfrequencies and
phase rigidities of the interface states as a function of γ in the
vicinity of the EP α12. When the EP α12 is approached along
the γ direction, the dispersion shows a square-root behavior,
in contrast to the linear behavior along ky direction shown in
Fig. 11(e).

C. Order-3 EPs and anisotropic EPs in εr = 12

In Fig. 8, the first row of panels shows the formation of an
order-3 EP �123, and the third row shows the formation of an
anisotropic EP α12. We now turn to the second row of panels in
Fig. 8, where εr = 12 and find that in addition to the formation
of an order-3 EP, there is also formation of anisotropic EPs.
We plot the trace of EPs in the parameter space (ky, γ ) in
Fig. 9 by green line. When γ is small, there are two typical
EPs, one is the EP SL

23 labeled by solid dots at small ky and
the other is EP SR

12 labeled by open triangles at large ky. The
corresponding interface state bands with two EPs and a zigzag
dispersion is shown in Fig. 8(d). As shown in the right inset
of Fig. 9, when we keep on increasing γ , a new EP denoted
by β12 appears, which we will discuss later, and then it splits
into two EPs labeled as SN

12 (marked by open diamond) and SL
12

(marked by solid square). When γ increases further, the EPs
SN

12 and SL
23 will coalesce into an order-3 EP labeled as �123,
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FIG. 12. (a), (d) Real parts, (b), (e) imaginary parts of eigen-
frequencies, and (c), (f) phase rigidities |rm| of interface states as
functions of γ . The original parameters of the cylinders we used to
build the Hamiltonian model for (a)–(c) is ε(0)

r = 13, γ (0) = 2.31,
kya/2π = 0.216; and for (d)–(f) is ε(0)

r = 12, γ (0) = 2, kya/2π =
0.0818. Solid lines with different colors representing different inter-
face bands are calculated by the Hamiltonian model. The circles are
calculated by COMSOLwith PML boundary conditions. The pink stars
denote the EPs labeled as α12 and β12.

which is similar to the formation of �123 in the blue lines.
This EP �123 disappears as γ increases further, and there are
only two EPs SL

12 and SR
12 left. These two EPs will coalesce

into an anisotropic EP α12 as γ increases, which is the same
as the process we have illustrated in εr = 13 denoted by the
purple line.

Comparing these three lines in Fig. 9, we find that the green
line (εr = 12) is more than just a composite of the blue line
(εr = 11) and the purple line (εr = 13). In the green line, we
find the formation of an order-3 EP �123 which also appears
in the blue line, and the formation of an anisotropic EP α12

which also appears in the purple line. But, the splitting of an
EP β12 illustrated in the inset of Fig. 9 is unique to the green
line.

Note that in Figs. 6 and 7, we have described the transition
from EP SL

23 to EP SL
12 as εr increases. In Fig. 13, we plot the

transition from EP SL
23 to EP SL

12 as γ increases and find the
middle band touches the lowest band, forming an EP denoted
by β12, which is shown in Fig. 14. As γ increases further,
the EP β12 splits into two EPs labeled as SN

12 and SL
12, which

is shown in Fig. 13(b). In Figs. 12(d)–12(f), we plot the EP
β12 in the γ direction for a fixed kya/2π = 0.0818. As shown
in Figs. 14 and 12(d)–12(f), β12 is an anisotropic EP, whose
dispersion is linear along the ky direction and of square-root
form along the γ direction. We note that in the green line, two
anisotropic EPs (denoted by α12 and β12) appear. Different
from EP α12, whose imaginary parts of the eigenfrequency
show linear dispersion along the ky direction, the real parts
show linear dispersion around the EP β12.

FIG. 13. (a)–(c) Real parts and (d)–(f) imaginary parts of eigen-
frequencies of interface states as functions of ky are calculated by
COMSOL with PML boundary condition. The number of column
layers of the semi-infinite PCs is truncated to N = 15. The blue (red)
circles represent interface states in exact (broken) PT -symmetry
phase. The relative permittivities of the cylinders are (a), (d) εc =
12 ± 2i; (b), (e) εc = 12 ± 2.08i; and (c), (f) εc = 12 ± 2.2i. The
symbols labeled by SL

23, SL
12, and SN

12 are EPs.

VII. CONCLUSION

In this work, we studied the formation of interface modes
in PT -symmetric PCs. It is well known that interface modes
will exist if the real part of permittivity changes sign across the
boundary of a PC, and we see here that interface modes with
real eigenfrequencies will also exist if the imaginary parts of
permittivity change sign across a boundary. Best illustrated in
Fig. 8, which shows the boundary mode dispersions for vari-
ous values of the real and imaginary parts of the permittivity,
the interface modes show some peculiar dispersion features
that are not found in Hermitian systems. These interesting

FIG. 14. Real parts of eigenfrequencies of interface states as
functions of ky are calculated by COMSOL with PML boundary
conditions. The number of column layers of the semi-infinite PCs
is truncated to N = 15. The relative permittivity of the cylinders
we used is εc = 12 ± 2.07706i. The pink star labels the anisotropic
EP β12.
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features include zigzag dispersions with turning points being
exceptional points and there are also closed loops of boundary
modes with the vertices being exceptional points. The peculiar
band diagrams are quite similar to the folded bands with
infinite group velocity points discussed previously [40,46].
These infinite group velocity points in the bands can be treated
as exceptional points. We note in passing that a physical
system carrying folded band has to be non-Hermitian. Her-
mitian systems (for example, those with ε equal to a constant
negative value) can exhibit folded bands but those systems are
not compatible with causality. The trajectories of the EPs in
the parameter space (ky, γ ) for different values of εr are sum-
marized in Fig. 9. Close to the Brillouin zone center, when the
Bloch momentum ky → 0, the existence and the dispersion
of these boundary modes can be obtained semianalytically
using effective medium theory. This is illustrated in Fig. 4 and
elaborated in the associated discussion. As the magnitude of
Bloch momentum of the boundary modes increases, a more
elaborate Hamiltonian model gives a quantitative description
of the dispersion, which shows that the dispersion and its
dependence on system parameters are closely related to the
formation and coalescence of EPs. The details are rather
fascinating, as we observe the coalescence of order-2 EPs
into higher-order EPs and the formation of anisotropic EPs.
The results obtained using different computational methods
(COMSOL and multiple scattering) and different boundary
conditions are consistent with each other. The results obtained
with periodic boundary conditions, as shown in Fig. 2, deserve
some additional comments. First, it shows that as the size of
the supercell increases, the bulk modes acquire an imaginary
part in the eigenfrequency (entering the broken phase). In
PT -symmetric system, it is usually the increase in non-
Hermiticity γ that drives the system into the broken phase.
The results in Fig. 2 show that the increase of system size
(the number of cylinders N) alone can take the system into
the broken phase while γ remains constant. In the large-N
limit, only the interface modes remain in the exact phase,
having zero imaginary part in its eigenfrequency and this band
is localized on the loss-gain interface. This mode lies inside
the continuum of the real bulk modes when γ = 0, and in a
certain sense these boundary modes are bound states in the
continuum.
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APPENDIX A: MULTIPLE SCATTERING METHOD

In this Appendix, we will construct the plane-wave scatter-
ing problem of a 2D PC. We can determine the band structure
of a PC from the solution of an eigenvalue problem [47].
We consider a 2D PC comprising a rectangular lattice (lattice

constant is a along the y direction and b along the x direction)
of dielectric cylinders embedded in the air whose relative
permittivity is equal to 1. The cylinders have a radius rc,
relative permittivity εc, and relative permeability μc = 1.

We begin with a single infinite grating periodically ar-
ranged along the y direction, corresponding to one layer of
this lattice. A TM polarization (electric field is along the axes
of the cylinders) plane wave with wave vector k0 is incident
onto the grating and perpendicular to the axes of the cylinders
(z direction). The wave number is k2

0 = (ω/c)2, where ω is
the angular frequency and c is the speed of light in vacuum.
The component parallel to the y direction is denoted by kp

and, therefore, the wave vector along the x direction is kx =√
k2

0 − k2
p . We define the incident electric field as

Einc = E0 exp[i(kpy + kxx)]ẑ, (A1)

where E0 is the amplitude of the incident field. Then, the
incident magnetic field can be written as

H inc
x = kp

ωμ0
E0 exp[i(kpy + kxx)], (A2a)

H inc
y = − kx

ωμ0
E0 exp[i(kpy + kxx)]. (A2b)

To calculate the band structure, we need first establish the
scattering matrices of the structure. The scattering field of
the cylinders can be expanded as a summation of cylindrical
functions, and then we expand these cylindrical functions as
summation of plane waves at the interface of the grating. The
various scattering plane waves with wave vector in the x-y
plane are like

K±
m = (±qm, kp − gm), (A3)

where gm = 2mπ/a is the reciprocal vector parallel to the
grating, qm =

√
k2

0 − |kp − gm|2 , and the sign (±) before qm

is corresponding to a propagating (if qm is real) or evanescent
wave (if qm is imaginary) along the positive or negative x
direction.

The full scattering matrices of the grating composed of
cylinder are well established in many references, such as [48].
These scattering matrices are usually complicated to calculate.
For a 2D PC with TM polarization, we can represent the
cylinders using an out-of-plane electric monopole and two
in-plane magnetic dipoles [49]

Pẑ = αeE loc
z ẑ, (A4a)

M = αmHloc. (A4b)

E loc
z and Hloc are the local fields at the position of the cylin-

ders. The local fields are summations of the external incident
fields and the scattering field from other cylinders. αe and αm

are the polarizability of the monopole and dipole of a cylinder,
respectively, which are represented as [50]

αe = 4iε0

k2
0

β0(rck0), (A5a)

αm = 8i

k2
0

β1(rck0), (A5b)
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where β0 and β1 are Mie scattering coefficients and can be
represented using Bessel functions like

βn(rck0)

= μcJn(ncrck0)J ′
n(rck0) − ncJn(rck0)J ′

n(ncrck0)

μcJn(ncrck0)H ′
n

(1)(rck0) − ncH (1)
n (rck0)J ′

n(ncrck0)
.

(A6)

Jn, H (1)
n , J ′

n, H ′(1)
n are the first kind of Bessel functions, the

first kind of Hankel functions, and their derivatives with order
n. nc = √

εcμc is the refractive index of the cylinder and rc

is the radius of the cylinder. At the limit where k0rc is a
small number, the scattering properties of the cylinder are
well represented by the lowest three modes. The electric fields
induced by electric moment Pẑ and magnetic moment M are
represented using Green’s function like

E(r) = [Pω2μẑ + iωμ∇ × M]
↔
G(r, r′). (A7)

↔
G (r, r′) is a dyadic Green’s function, representing the re-
sponse at r induced by a point source at r′.

Now, let us turn to the PC illustrated in Fig. 1(a). We denote
the field acting on the polarizable unit locating at ith column
and jth row as E loc

i j ẑ and Hloc
i j , i = 1, 2, . . . , N1 + N2, with N1,

N2 being the number of column layers of the left and right sub-
lattices. According to Eq. (A4), the induced monopole/dipole
moments are Pi j = αe

i Eloc
i j , Mi j = αm

i Hloc
i j . The polarizability

αe
i , αm

i representing the cylinders in different columns could
be different. The PC is uniform along the z direction, and
therefore the fields are also uniform along the z direction. The
electric monopole moment of the cylinder is polarized along
the z direction, and the scattered electric fields of the cylinders
only have z component. The dyadic green function in Eq. (A7)
just keeps the Gzz component as

Gzz(r, r′) = i/4H (1)
0 (k0|r − r′|). (A8)

Then, the scattering electric fields induced by a cylinder at
r = ri j can be written as

E ind
i j (r)ẑ = [Pi jω

2μẑ + iωμẑ · ∇ × Mi j]Gzz(r, ri j ). (A9)

The magnetic field can be obtained by Maxwell’s equation

Hind
i j (r) = 1

iωμ
∇ × E ind(r)ẑ = −iω∇ × [Pi jGzz(r, ri j )ẑ]

+∇ × [ẑ · ∇ × Mi jGzz(r, ri j )]. (A10)

We know that the system is periodic along the y direction,
applying the Bloch condition along the y direction into the
polarization

Pi j = exp(ia jkp)Pi, Mi j = exp(ia jkp)Mi, (A11)

where Pi and Mi represent the polarization of cylinder at ith
column and 0th row, and a j = ri j − ri0 represents the distance
between cylinders at ri j and ri0. Then, the total scattering field
of the structure can be written as

E tot (r) =
∑

i j

[Pi jω
2μẑ + iωμẑ · ∇ × Mi j]Gzz(r, ri j )

=
∑

i

[Piω
2μẑ + iωμẑ · ∇ × Mi]

×
∑

j

Gzz(r, ri j ) exp(ia jkp)

=
∑

i

[Piω
2μẑ + iωμẑ · ∇ × Mi]G(r, ri ), (A12)

where we have defined

G(r, ri ) =
∑

j

Gzz(r, ri j ) exp(ia jkp)

= i

4

∑
j

H (1)
0 (k0|r − ri j |) exp(ia jkp)

=
∑

m

−1

2iaqm
exp[i(kp − gm)y + iqm|x − xi0|]

(A13)

representing the Green’s function of the ith column, and xi0 is
the x coordinate of the cylinder at ri0 = (xi0, 0). In the last
step of Eq. (A13), we use the identity for Hankel function
to transform the lattice sum in real space into the reciprocal
space [48,51].

The local field acting on the cylinder at the position ri j is
given by the summation of the external incident field and the
scattering field induced by other cylinders at r �= ri j , that is,

E loc
i j = E inc

i j + [Piω
2μẑ + iωμẑ · ∇ × Mi]Gb(ri )

+
∑
i′ �=i

[Pi′ω
2μẑ + iωμẑ · ∇ × Mi′ ]G(ri j, ri′ ),

(A14)

where

Gb(ri ) = lim
r→ri j

G(r, ri ) − Gzz(r, ri j )

= lim
r→ri j

∑
j′ �= j

Gzz(r, ri j′ ) exp(ia j′kp). (A15)

The first term in Eq. (A14) represents the incident field, the
second term represents the scattering fields induced by the
column i, and the last term represents the scattering fields of
other columns at i′ �= i. Gb in Eq. (A15) represents the total
scattering field at ri j of ith column except for the cylinder at
ri j , which is expressed as [51]

Gb = 1

2π

[
ln

(
k0a

4π

)
+ γE

]
+ i

(
1

2akx
− 1

4

)
+ 1

2a

∞∑
m=1

(
i

qm
+ i

q−m
− 2

gm

)
, (A16)

where γE is the Euler constant.
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Substituting Pi = αe
i E loc

i and Mi = αm
i Hloc

i into Eq. (A14), we can build the self-consistent equations

N1+N2∑
i′=1

⎡
⎢⎢⎣

δii′ − μ0ω
2αe

i′F1(i, i′) iωμ0α
m
i′ F3(i, i′) −iωμ0α

m
i′ F2(i, i′)

iωμ0α
e
i′F3(i, i′) δii′ + αm

i′ F6(i, i′) −αm
i′ F5(i, i′)

−iωαe
i′F2(i, i′) −αm

i′ F5(i, i′) δii′ + αm
i′ F4(i, i′)

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

E loc,z
i′

H loc,x
i′

H loc,y
i′

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

E inc,z
i′

H inc,x
i′

H inc,y
i′

⎤
⎥⎥⎦. (A17)

Fn(i, i′) (n = 1, 2, · · · 6) represents the lattice sums of the cylinder in column i′ along the y direction and take expressions as

F1(l, l ′) =
{ 1

2π

[
ln

( k0a
4π

) + γE
] + i

(
1

2akx
− 1

4

) + 1
2a

∑∞
m=1

(
i

qm
+ i

q−m
− 2

gm

)
l = l ′,∑

m
i

2aqm
ei|l−l ′ |bqm l �= l ′,

F2(l, l ′) =
{

0 l = l ′,

sign
(
l − l ′)∑

m
−1
2a ei|l−l ′ |bqm l �= l ′,

F3(l, l ′) =
⎧⎨
⎩

− kp

2akx
− i kp

2π
− ∑∞

m=1

[ kp−gm

2aqm
+ kp+gm

2aq−m

]
l = l ′,∑

m
gm−kp

2aqm
ei|l−l ′ |bqm l �= l ′,

F4(l, l ′) =
⎧⎨
⎩− k2

0
4π

[
ln

( k0a
4π

) + γE − 1
2

] − k2
p

4π
− π

6a2 + i
( k2

0
8 − kx

2a

) − 1
2b

∑∞
m=1

(
iqm + iq−m + 2gm − k2

0
gm

)
l = l ′,∑

m
−iqm

2a ei|l−l ′ |bqm l �= l ′,

F5(l, l ′) =
{

0 l = l ′,

sign
(
l − l ′)∑

m
i(gm−kp)

2a ei|l−l ′ |bqm l �= l ′,

F6(l, l ′) =
⎧⎨
⎩− k2

0
4π

[
ln

( k0a
4π

) + γE + 1
2

] + k2
p

4π
+ π

6a2 + i
( k2

0
8 − k2

p

2bkx

) − 1
2a

∑∞
m=1

( i(kp−gm )2

qm
+ i(kp+gm )2

q−m
− 2gm − k2

0
gm

)
l = l ′,∑

m
−i(gm−kp)

2a ei|l−l ′ |bqm l �= l ′.

In the above equations, m is the diffraction order, and the sum
over m is truncated to certain value m0 in numerical calcu-
lation. l − l ′ denotes the distance between different columns,
and sign(l − l ′) is the sign function. a and b are the lattice
constant along the y and x directions, respectively. For a
square lattice that we studied in this paper, we have a = b.

Equation (A17) describes a scattering problem and can be
rewritten as

M
(
ω, kp)� loc = � inc, (A18)

where we denote the content in the first bracket of Eq. (A17)
as a matrix M(ω, kp), � loc represents incident wave from
outside and � loc represents local field incident on the cylinder.

APPENDIX B: THE LEFT EIGENSTATE OF A
NON-HERMITIAN PC WITH RECIPROCAL MEDIA

In analogy with the inner product of two wave functions in
quantum mechanics [52], we can define the inner product of
two vector fields F(r) and G(r) as

〈F |G〉 ≡
∫

d3r F∗(r) · G(r). (B1)

The Hermitian adjoint of an operator � is labeled as �†, and
is defined as [53]

〈�†F|G〉 ≡ 〈F|�G〉. (B2)

We say the operator � is Hermitian if �† = �.
In PCs, the eigenvalue problem for electric field can be

written as [44]

LE(r) ≡ ε−1∇ × ∇ × E(r) =
(

ω

c

)2

E(r), (B3)

where L ≡ ε−1∇ × ∇×. The Hermitian adjoint of the opera-
tor L is

L† = ∇ × ∇ × (ε−1)† = εL(ε−1)†. (B4)

For a reciprocal medium εT = ε, we have

LT = (L†)∗ = ∇ × ∇ × (ε−1)T = εLε−1. (B5)

In a periodic system, Bloch state ER
k (r) = eik·ruR

k (r)
is a common eigenstate of L and the lattice translation
operator Ta:

LER
k =

(
ω(k)

c

)2

ER
k, (B6a)

TaER
k = eik·aER

k . (B6b)

For the non-Hermitian system, we define the corresponding
left eigenstate as

L†EL
k =

(
ω(k)∗

c

)2

EL
k. (B7)
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Taking the complex conjugate of Eq. (B7) and multiplying ε−1

on both sides, we obtain

ε−1
(
L†EL

k

)∗ = Lε−1
(
EL

k

)∗ = ε−1

(
ω(k)

c

)2(
EL

k

)∗
. (B8)

Therefore, ε−1(EL
k )∗ is also a right eigenstate of L due to

the reciprocity of the permittivity. Since [L†, Ta] = 0, the
left eigenstate EL

k should be an eigenstate of Ta, i.e., TaEL
k =

λ(a)EL
k . And using the normalization relation of the Bloch

states,

1 = 〈
EL

k

∣∣ER
k

〉 = 〈
EL

k

∣∣T †
a Ta

∣∣ER
k

〉 = λ(a)∗eika, (B9)

we can obtain λ(a) = eik·a, which means that EL
k is a Bloch

state at k. We can check that

Taε
−1(EL

k (r)
)∗ = ε−1EL

k (r + a)∗ = ε−1(eik·aEL
k (r)

)∗

= e−ik·aε−1EL
k (r)∗, (B10)

which means ε−1(EL
k )∗ = ER

−k is the right Bloch state at −k
and, therefore,

EL
k = (

εER
−k

)∗
. (B11)

The biorthonormal relationship of a non-Hermitian PC be-
comes

〈
EL

km

∣∣ER
kn

〉 =
∫

d2r
(
EL

km

)∗
ER

kn

=
∫

d2r ER
−kmεER

kn

=
∫

d2r uR
−kmεuR

kn

= δmn. (B12)
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