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Accidental Double Dirac Cones and Robust Edge States in
Topological Anisotropic Photonic Crystals

Xiao-Dong Chen, Wei-Min Deng, Fu-Li Zhao, and Jian-Wen Dong*

Dirac cones in photonic systems have many profound applications such as
achieving zero-index materials and nontrivial photonic phases. It is shown
that double Dirac cones at the zone boundary can be restored by achieving
accidental degeneracy between transverse electric and transverse magnetic
modes in 2D photonic crystals with anisotropic permittivity. The topological
band gap can be obtained by lifting nontrivial double Dirac cones, each of
which is formed by two orthogonally polarized linear branches sharing the
same mirror parities. Robust transport of gapless and high transmission of
gapped edge states are also demonstrated in topological anisotropic photonic
crystals, demonstrating that a high transmission flat-top spectrum is
observed in various working frequency regions even when the interface is no
longer straight. This may pave the way to a paradigm for a
bandwidth-controllable robust waveguide in topological photonics.

1. Introduction

Conical dispersions, such as Dirac cones[1–3] and Weyl points,[4–7]

have been widely studied in various fields due to the analo-
gies between different solid state systems. For example, photonic
crystals (PCs) with a single Dirac cone at Brillouin zone cen-
ter behave as zero-index metamaterials at a finite frequency,[8,9]

leading to the realization of invisibility cloak,[10] asymmetric
transmission,[11] and directional emission.[12,13] On the other
hand, topological phases characterized by nonzero Berry curva-
ture in momentum space can be obtained by breaking single or
double Dirac cones at zone center[14–17] or zone boundary.[18–23]

It provides a new degree of freedom to control the flow of elec-
tron, sound or light, leading to some novel phenomena such as
spin-direction locking edge states and robust transport immune
to defects.[2,3,24–30] With regard to the time-reversal invariant pho-
tonic systems, one key point for the realization of topological PCs
with nonzero spin Chern number is to construct double Dirac
cones. One representativemethod is to introduce the electromag-
netic (EM) duality symmetry, that is, ε = μ.[20,31] However, the
magnetic response is inherently weak at optical frequencies, and
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the EM duality symmetry will be bro-
ken in non-magnetic systems. As a re-
sult, double Dirac cones cannot be guar-
anteed and how canwe restore the double
Dirac cones in non-magnetic systems?
On the other hand, the topologically pro-
tected edge states exhibit gapless feature
if the obstacles do not violate topolog-
ical protection. While in realistic pho-
tonic systems, the gapless feature is not
always guaranteed and gapped photonic
edge states show up. Then another ques-
tion arises: can the robust transport or
high transmission against obstacles be
preserved for the gapped edge states in
topological band gaps?
In this work, we show that double

Dirac cones at zone boundary can be
restored in PCs with anisotropic permittivity by achieving ac-
cidental degeneracy between transverse electric (TE) and trans-
verse magnetic (TM) modes. Under nonzero bianisotropy, we
generalize the band gap opening condition by exploiting the de-
generate perturbation theory and mode symmetry analysis. We
demonstrate that the realization of double Dirac cones is not the
sufficient condition to open the band gap, andwe should consider
the parity of TE and TM modes. Nontrivial double Dirac cones,
each of which consists of TE and TM modes sharing the same
mirror parity, transform into a topological band gap. We con-
struct such nontrivial double Dirac cones by the anisotropic per-
mittivity configuration and obtain topological anisotropic PCs.
Gapless edge states and their robustness against bends with dif-
ferent turning angles are demonstrated at the domain wall be-
tween two topologically distinct anisotropic PCs. Last, we present
the high transmission of gapped edge states in the topologi-
cal anisotropic PC, showing as a comparison to the strongly
backscattered gapped edge states in the trivial PC.

2. Results and Discussion

2.1. Accidental Double Dirac Cones

To have Dirac cones at the zone boundary, let us consider a
2D triangular PC (Figure 1a). It consists of periodic circular
rods (labeled as region 2) embedded in background (labeled as
region 1). We choose the radius of rods to be r = 0.407a where
a is the lattice constant. As the EM duality symmetry is broken
in non-magnetic systems, TE- and TM-polarized Dirac cones
near zone boundary (i.e., K point) have different frequencies.
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Figure 1. Accidental double Dirac cones in anisotropic photonic crystals
(PCs). a) Schematic of triangular PC consisting of circular rods (labeled
by region 2) in background (labeled by region 1). The radii of rods are set
to be r = 0.407a where a is the lattice constant. The right inset shows the
first Brillouin zone with high symmetry k-points. The frequencies of TE and
TM modes are respectively tuned by the in-plane (εr||) and out-of-plane
(εrz) component of permittivity in non-magnetic systems. b) Evolution of
Dirac frequency of the lowest TE dipolarmode at K point along the in-plane
permittivity of region 2 (ε2r||). Orange color (Inset) shows that region 2 of
PC is filled with high ε medium for TE polarization. c) Similar to (b) but
evolution of Dirac frequency of the lowest TM dipolar mode along the in-
plane permittivity of region 1 (ε1rz). In contrast to materials configuration
in (b), orange color (Inset) shows that region 1 of PC is filled with high ε

medium for TM polarization. d) 3D eigen-frequency surfaces for TE (blue)
and TM (red) polarizations showing the accidental double Dirac cones in
anisotropic PC with

↔
ε1r = diag(1, 1, 5) and

↔
ε2r = diag(10, 10, 1).

However, because TE and TM polarized dispersions are sepa-
rately determined by the in-plane and out-of-plane component
of permittivity, we can restore the accidental double Dirac cones
by tuning the anisotropic permittivity. To see this, we fix ε1r|| = 1
at region 1 while fill region 2 with high ε medium (orange rods)
for the TE polarization (inset of Figure 1b). Figure 1b plots the
evolution of the Dirac frequency of the lowest TE dipolar states
at K point as a function of the in-plane permittivity of region
2 (ε2r||). With the increasing of ε2r||, the TE Dirac frequency
decreases monotonously. In contrast, for TM polarization, we
fill region 1 with high ε medium (orange background) while fix
ε2rz = 1 at region 2 (inset of Figure 1c). Figure 1c shows that the

Dirac frequency of TM dipolar modes decreases monotonously
with the increasing of the out-of-plane permittivity of region
1 (ε1rz). We fix one frequency (e.g., f = 0.365c/a) and draw a
horizontal dashed black line. It intersects with the TE (TM)
dipolar mode dispersion at ε2r|| = 10 (ε1rz = 5). It tells us that
when regions 1 and 2 are respectively filled with anisotropic
medium of

↔
ε1r = diag(1, 1, 5) and

↔
ε2r = diag(10, 10, 1), acciden-

tal double Dirac cones can be restored. Figure 1d shows the 3D
eigen-frequency surface near K point. The conical dispersions
for TE (blue) and TM (red) polarizations are found and they are
accidentally degenerate at f = 0.365c/a, proving the realization
of accidental double Dirac cones in anisotropic PCs.

2.2. Band Gap Opening Condition

Before presenting topological anisotropic PCs by breaking the ac-
cidental double Dirac cones, we analyze the band gap opening
condition. Consider a 2D anisotropic PC under nonzero bian-

isotropy, the constitutive relations are
⇀

D = ε0
↔
εr

⇀

E+ ↔
ζ

⇀

H and
⇀

B =
μ0

↔
μr

⇀

H+ ↔
ζ

⇀

E. Here,
↔
εr = diag(εr||, εr||, εrz) is the anisotropic per-

mittivity and
↔
μr = 1 is the permeability.

↔
ζ is the bianisotropic

tensor with nonzero elements of ζ12 = ζ ∗
21 = iζ0/c in which ζ 0

characterize the coupling strength between TE and TM modes.
The Maxwell equations can be written in the matrix form:

⎛
⎜⎜⎜⎝

i ζ̃
ñ2 − ζ̃ 2

∇× i ñ
ñ2 − ζ̃ 2

∇×

−i ñ
ñ2 − ζ̃ 2

∇× −i ζ̃
ñ2 − ζ̃ 2

∇×

⎞
⎟⎟⎟⎠

(
Ẽ
H̃

)
= ω̃

(
Ẽ
H̃

)
(1)

where the normalized quantities are Ẽ =
√

ε0
↔
εr

⇀

E, H̃ = √
μ0

⇀

H,

ñ =
√

↔
εr

↔
μr =

√
↔
εr, ω̃ = ω/c , and ζ̃ = ↔

ζ c with c is the velocity of
light in vacuum. When ζ 0 = 0, TE and TMmodes are decoupled.
In general, the dispersion bands of these two polarizations differ
and cross to each other. In the presence of nonzero bianisotropy,
eigen-fields of TE and TMmodes will couple and the evolution of
dispersion bands can be analyzed by the degenerate perturbation
theory.[32] Here, we have the unperturbed Hamiltonian for ζ 0 = 0
(H0) and the perturbed Hamiltonian upon nonzero bianisotropy
(H0 + �H):

H0 =

⎛
⎜⎝ 0

i
ñ

∇×
−i
ñ

∇× 0

⎞
⎟⎠ , �H =

⎛
⎜⎜⎜⎝

i ζ̃
ñ2 − ζ̃ 2

∇× i ζ̃ 2

ñ3
∇×

−i ζ̃ 2

ñ3
∇× −i ζ̃

ñ2 − ζ̃ 2
∇×

⎞
⎟⎟⎟⎠

(2)

We suppose that the eigen-solutions of H0 and H0 + �H are
(Ẽm, H̃m) and (E ′, H′) with E ′ = ∑

m amẼm, H′ = ∑
m amH̃m, and

am is the hybridized coefficient with m running from TE to TM.
The secular equation for the perturbed eigen-frequency ω′ is

(
ωTE + �HTE,TE �HTE,TM

�HTM,TE ωTM + �HTM,TM

) (
aTE
aTM

)
= ω′

(
aTE
aTM

)
(3)
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Here, �Hm,n = 〈(Ẽm, H̃m)|�H|(Ẽn, H̃n)〉 is integrated inside the
unit cell of PC. After the block diagonalization of Equation (3),
the perturbed eigen-frequency can be expressed as

ω′± = ωD + (�HTE,TE + �HTM,TM − vTEδk + vTMδk) /2±
√
(−�HTE,TE + �HTM,TM + vTEδk + vTMδk)2/2+ �HTE,TM · �HTM,TE (4)

Here, the frequency dispersions of coupled TE and TMmodes
are assumed to be ωTE = ωD − vTEδk and ωTM = ωD + vTMδk,

with δk being the distance between wave vector of
⇀

k and wave
vector of crossing k-point of TE and TM dispersions. If�HTE,TM ·
�HTM,TE = 0, the square root in Equation (4) reduces into a lin-
ear function of δk. Then ω′

+ = ω′
− will always be satisfied at

one δk, and the band gap fails to open. So the generalized band
gap opening condition under nonzero bianisotropy is �HTE,TM ·
�HTM,TE 
= 0. Although the calculation of �Hm,n is a bit tedious
due to the complexity of the integration, we just need to deter-
mine whether �Hm,n is nonzero or not. In this regard, mode
symmetry analysis is a simple way to solve this problem.[33] For
triangular PCs, �Hm,n 
= 0 is equivalent to that the irreducible
representations of TE and TMmodes under mirror operation are
the same, that is, σ (TE ) = σ (TM). The detailed discussion of
the band gap opening condition with mode symmetry analysis is
given in Supporting Information A.

2.3. Topological Band Gap

Considering the group symmetries of interacted TE and TM
modes, there are two ways to form accidental double Dirac cones
in triangular anisotropic PCs (Figure 2a,d). The first kind of
double Dirac cones can be divided into two cones, each of which
is formed by TE and TM modes having different parities (Figure
2a). It leads to �Hm,n = 0 and consequently two cones are only
frequency shifted apart and no band gap can be obtained. As
an example, we consider the anisotropic PC whose region 1
and 2 are respectively filled with

↔
ε1r = diag(1, 1, 33.55) and

↔
ε2r = diag(20, 20, 6.71). Such anisotropic PC has a normal
double Dirac cones around the frequency of 0.3c/a (Figure 2b).
These double Dirac cones will not be gapped when nonzero
bianisotropy is introduced (Figure 2c). Hence the realization of
double Dirac cones is not a sufficient condition to have band gaps.
In contrast, as shown in Figure 2d, nontrivial double Dirac

cones are constructed by two cones with TE and TMmodes shar-
ing the samemirror parity (Figure 2d). So�Hm,n 
= 0 and a band
gap will be obtained after introducing nonzero ζ 0. As an exam-
ple of demonstrating the nontrivial double Dirac cones and the
resultant topological band gap under nonzero bianisotropy, Fig-
ure 2e shows the TE (blue) and TM (red) band structures of
the anisotropic PC presented in Figure 1d. After analyzing the
mode symmetry of double Dirac cones around the frequency of
0.365c/a, it is found that these double Dirac cones are nontrivial
as each of them is formed by two branches with the same mir-
ror parity. Inferring from the band evolution schematic of Figure
2d, it can be predicted that a band gap will open when a nonzero
bianisotropy is applied. A larger bianisotropy results in the band
gap with a wider gap bandwidth, for example, a representative

example is plotted in Figure 2f when ζ 0 = 0.9. Around K point,
the band dispersion and its evolution under nonzero bianisotropy
can be described by Ĥ = vD(τ̂zŝ0σ̂xδkx + τ̂0 ŝ0σ̂yδky )+ ηζ0τ̂zŝzσ̂z,

where τ̂i , ŝ i , and σ̂i are the Pauli matrices acting on valley, spin,
and orbital subspaces. vD is the group velocity near the Dirac
point. ηζ0 (|2ηζ0| determines the frequency width of band gap
opening at K point) is the effective mass induced by the nonzero
bianisotropy. η is the gap opening coefficient which can be ex-
tracted from the bianisotropy dependent band gap atK point. The

Figure 2. Normal and nontrivial double Dirac cones. a) Schematic of nor-
mal double Dirac cones, each of which is formed by TE and TM modes
sharing different mirror parities. These double cones are just frequency
shifted apart and no band gap is observed when nonzero bianisotropy is
applied. b) Normal double Dirac cones and c) Frequency shifted cones
in anisotropic PC. d) Schematic of nontrivial double Dirac cones, each of
which is formed by TE and TMmodes with the same mirror parity. A topo-
logical band gap is then obtained under nonzero bianisotropy. e) Nontriv-
ial double Dirac cones in anisotropic PC which have been presented in
Figure 1d, around the frequency of 0.365c/a. f) A topological band gap
ranges from 0.4c/a to 0.45c/a (yellow) when ζ 0 = 0.9. Inset in (f) shows
the schematic of the unit cell.
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Figure 3. Dispersion bands and robust transport of gapless edge states in the topological anisotropic PC. a) Schematic of the domain wall between
two topologically distinct non-magnetic PCs. The top one is applied under ζ 0 = −0.9 while the bottom one is ζ 0 = +0.9. b) Band structures of edge
states in which the spin-up and spin-down modes are marked by blue and red curves, respectively. Two gapless edge states dispersions for both spin
polarizations are found as the spin Chern number difference across the domain wall is 2. c) Eigen-fields (Ez and Hz) of a representative spin-up mode
(marked by a green dot in (b)) at f = 0.42c/a are shown. d–g) Transmissions of edge state with the frequency of f = 0.42c/a when the source is excited
at the left end. Ez fields of four kinds of waveguides, that is, d) flat channel, e) 60° bend, f) 90° bend, and g) 120° bend are shown. Schematic of each
waveguide is attached at the left-bottom corner. In addition, the zoom-in fields near the entrance are also given. No backscattered waves are observed
in (e)–(g) as their zoom-in fields are the same as that in (d), verifying the presence of robust transport of edge states.

detailed derivation of the effective Hamiltonian is presented in
Supporting Information B. The bianisotropy (ζ0) acts on photon
in a similar way as the spin-orbital coupling on electron,[20] and
the result spin Chern number of bulk band below the band gap
is given by Cs = sgn(ηζ0). In this anisotropic PC, η > 0, and the
gap spin Chern number of band gap presented in Figure 2f is
Cs-gap = +1.

2.4. Robust Edge States

One major interest in topological phases is that they have ro-
bust edge states against defects. To see this, we first consider
the domain wall which is constructed by two topologically dis-
tinct anisotropic PCs (Figure 3a). The lower PC is that presented
in Figure 2f with ζ 0 = 0.9 while the upper PC has ζ 0 = −0.9.
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Figure 4. Robust transport and high transmission of gapped edge states in the topological anisotropic PC. a) Gapped edge dispersion (pink) along with
projected passing bands (shaded in grey) for the photonic boundary between the topological anisotropic PC and a trivial insulator. The termination of
boundary is τ = 0.06

√
3a, where τ measures the distance from boundary to the center of the outmost rods [inset]. b) Transmission through the flat

waveguide (red) and the waveguide with an inserting block (black). At most frequencies (e.g., f = 0.44c/a), the transmission of block waveguide is the
same as that of flat waveguide. At some frequencies (e.g., f = 0.435c/a), the transmission drops little but still keeps high value. c) Ez fields near the
blocked boundary at the frequency of 0.44c/a, showing almost all the EM wave is transmitted. d) Ez fields at the frequency of 0.435c/a, showing partial
transmission of EM waves around the inserting block.

As the spin Chern number difference across the domain wall is
2, there will be two gapless edge state dispersions. This is con-
firmed by the calculated band structures shown in Figure 3b, in
which spin-up and spin-down modes are respectively marked in
blue and red. Here, spin-up (spin-down) modes is referred to the
eigen-states with in-phase (out-of-phase) Ez andHz.[20] For exam-
ple, Figure 3c shows the eigen-fields of one spin-up state at the
frequency of 0.42c/a (marked by a green dot in Figure 3b). Both
Ez and Hz are localized near and decay away from the domain
wall. The phase difference between Ez andHz is 0, indicating the
spin-up polarization. In addition, spin-up modes have positive
group velocities while the spin-down modes have negative group
velocities inside the band gap. These counter-propagatingmodes
are decoupled to each other[34,35] and hence robust transport hap-
pens. As edge states are protected by the electromagnetic dual

symmetry, they are robust against disorders, such as perturbation
of rod position and different bend degree of domain wall. Other
defects, for example, an inclusion of perfect electric conductor
at the boundary of domain wall will destroy the robust transport
behavior. To demonstrate the robustness of gapless edge states,
we launch the input source at the left of the domain wall. The
rightward propagating EM waves are excited (Figure 3d). Even
when they encounter the 60° bend (Figure 3e), 90° bend (Figure
3f), and 120° bend (Figure 3g), the rightward EM waves can go
around these defects and keep moving rightward. The ratios of
the transmission of 60° bend, 90° bend, and 120° bend to that
of the flat waveguide are 0.96, 0.96, and 0.99, respectively. In the
simulation, the ratios are a bit different to 1 due to the finite size
of numerical calculation. Here, the 90° bend in Figure 3f does
not flip the spin as the spin classification is still valid for domain
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Figure 5. Band structure and transmission for gapped edge states in a trivial PC. a) Band structures of the trivial PC whose unit cell consists of an air
hole with r = 0.46 embedded in the background with εr = 15. The bianisotropic coefficient is ζ 0 = 0.9. The band gap (shaded in green) is topologically
trivial as no band inversion is observed when ζ 0 increases from 0 to 0.9. b) Gapped dispersion bands of edge states (cyan) within the trivial gap when
the photonic boundary termination is τ = 0.24

√
3a. c) Transmission through the blocked waveguide (black) is several orders of magnitude less than

that of the flat waveguide without defect (red), illustrating the wave blocking behavior. d) Ez fields of EM waves at the frequency of 0.44c/a show the
strong backscattering and zero transmission in the waveguide with an inserting block.

wall with armchair morphology (Supporting Information C). In
addition, the zoom-in field patterns in the entrance (outlined by
green rectangles in Figure 3d–g) are the same, also proving that
there are no backscattered waves when the EM waves meet the
bends.
Edge states will not always be gapless and will become gapped

at some boundaries. It is questioned whether robust transport or
high transmission of gapped edge states can be achieved under
the topological protection. To answer this question, we consider
a photonic boundary as shown in the inset of Figure 4a. It is con-
structed between the above-mentioned topological anisotropic
PC and a trivial homogeneous insulator that does not allow any
EM energy to enter.[36] To prevent the propagation of EM waves
with both two polarizations, the perfect electromagnetic conduc-
tors (PEMCs) should be considered.[37,38] In our simulation, we
set the constitutive parameters of this trivial homogeneous in-
sulators as εr = μr = diag(1,1,-10 000) to simplify the calcula-
tion. Here, we define the parameter τ (0 ≤ τ < 0.5

√
3a) to indi-

cate the boundary termination position along the�Mdirection of
the triangular PC. The boundary locates at the center of the out-
most row rodswhen τ = 0. By continuously altering the boundary

morphology from τ = 0, the spin-up and spin-down edge states
move closer and then merge together. As a result, the edge dis-
persions change to be gapped. For example, the dispersion bands
of edge states of the photonic boundary with τ=0.06√3a ranges
from 0.422c/a to 0.449c/a (pink curve in Figure 4a), not covering
the whole band gap frequency range. A dipole source at the left
end will excite rightward propagating waves along the flat waveg-
uide. Within the frequency range of gapped edge states, high
transmission is obtained (red curve of Figure 4b). To test the ro-
bustness of these gapped edge states, a rectangular obstacle with
the size of 2a × 2

√
3a is inserted as a defect. The transmission

of this blocked waveguide is also recorded (black curve in Fig-
ure 4b). At most of the frequencies, the transmission of blocked
waveguide is the same as that of flat waveguide. For example,
Ez fields of transmitted EM waves at the frequency of 0.44c/a
can wrap around the inserting obstacle and keep moving right-
ward, demonstrating the robustness of gapped edge states (right
panel of Figure 4c). At some other frequencies, the transmission
of block waveguide drops little but still keeps high value, indicat-
ing the high transmission of gapped edge states (Figure 4d). Note
that the frequency range of gapped edge states can be changed
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for boundary terminations with different τ , showing a potential
application in bandwidth-controllable robust waveguide.
Robustness or high transmission against obstacles is not al-

ways true for all gapped edge states. Figure 5 illustrates a com-
parative example showing that such predominant property is
protected by the nontrivial topology of band gap, instead of the
nonzero bianisotropy. The comparative PC consists of air rods (r
= 0.46a) in the dielectric background with εr = 15. The bian-
isotropic coefficient is kept unchanged as ζ 0 = 0.9, being the
same as that of PC in Figure 3f. When increasing ζ 0 from 0 to
0.9, no band inversion is observed and thus the band gap is topo-
logically trivial (see details in Supporting Information D). For a
fair comparison, the width of band gap (highlighted in green) is
tuned to be the same as that of the nontrivial PC in Figure 2f.
Figure 5b shows the gapped edge states when the bulk PC is ter-
minated with a trivial homogeneous insulator. The edge termina-
tion parameter is chosen to be τ=0.24√3a to have edge disper-
sions ranging from 0.422c/a to 0.449c/a, being similar to that in
Figure 4a. Figure 5c illustrates that the transmission of blocked
waveguide (black) is several orders of magnitude less than that of
flat waveguide (red) in the whole frequency range of gapped edge
states. In contrast to the high transmission of gapped edge states
in topological PCs, the EM waves experience strong backscatter-
ing. The inserting obstacle will totally block the rightward prop-
agating waves and it leads to no output energy at the right exit
(Figure 5d).

3. Conclusion

In conclusion, we show that accidental double Dirac cones can
be restored in non-magnetic PCs with anisotropic permittivity by
achieving degeneracy between TE and TMmodes.We deduce the
simplified gap opening condition based on group symmetry anal-
ysis, and demonstrate that the realization of double Dirac cones
is not the sufficient condition to open the band gap. Topologi-
cal anisotropic PCs are obtained by breaking nontrivial double
Dirac cones, each of which is formed by TE and TM modes with
the same mirror parity. Gapless edge states and their robustness
against bends with different turning angles are demonstrated at
the domain wall between two topologically distinct anisotropic
PCs. We also show the high transmission of gapped edge states
in topological anisotropic PCs, showing as a comparison to the
strongly backscattered gapped edge states in trivial PCs. In Sup-
porting Information E, we give an experimental design of the pro-
posed anisotropic PCs.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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