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Metamaterial slab as a lens, a cloak, or an intermediate
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We show that a metamaterial slab with arbitrary values of ε and μ behaves as a cloak at a finite frequency for a
small object located sufficiently close to it due to the suppression of the object’s optical excitations by enhanced
reflections. Reflections due to propagating components can partially suppress the excitation, while evanescent
components can cloak the object completely. In particular, a Veselago slab with ε = μ = −1 + iδ, as well as a
class of anisotropic negative refractive index slabs, can completely cloak the small object placed within a finite
distance from the slab when δ → 0.
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I. INTRODUCTION

An ideal Veselago slab with ε = μ = −11,2 can focus all
the Fourier components of light, making it a perfect lens. How
it works can be explained with the concept of “complementary
media,”3 which states that any medium can be optically
canceled by a material of equal thickness constructed as an
inverted mirror image of the medium, with (ε,μ) reversed
in sign. When an object placed at a distance zd from the
front of the Veselago slab with ε = μ = −1 and thickness d,
a perfect image will be formed 2d − zd away from the front
of the slab. However, the perfect lens effect is subtle (see,
for example, Ref. 4 for some early discussions on this). In
particular, an infinitesimal loss is usually required in the
Veselago slab, but it will also induce localized resonances,
which influence the image formation of an object lying within
the resonance region.5–8 As the loss approaches zero, any point
object located less than a certain distance from the lens will
be cloaked due to the presence of the resonant fields.7 The
ε = μ = −1 slab is thus a perfect lens and also a perfect cloak,
which is apparently contradictory. Our motivation is to solve
this puzzle and go beyond the perfect lens (ε = μ = −1) by
considering a metamaterial slab with arbitrary values of (ε,μ).

Using a Green’s function method, we find that for a slab
with arbitrary values of ε and μ, the reflections from the
slab (either the propagating components or the evanescent
components) can suppress the excitation of a small object
placed close to it. The evanescent components can completely
suppress the excitation and cloak the object as zd → 0. This
cloaking effect is generally not influenced by losses in the
slab. But the lossy Veselago slab is a special case in which the
suppression effect of the evanescent wave is so strong that it
completely cloaks small objects within a finite distance of d/2
as the material loss goes to zero. We also find that a class of
“folded geometry” slabs9,10 has the same cloaking effects for
a small object within a certain critical distance in the limit of
zero absorption. A negative index metamaterial slab generally
behaves as somewhere between a cloak and a lens in the sense
that it will form an image with suppressed intensity for a small
object placed close to it.

This paper is organized as follows. In Sec. II, the Green’s
function method is described. In Sec. III, the cloaking and
imaging effects of an isotropic metamaterial slab with arbitrary
ε and μ are discussed. The cloaking effect of an anisotropic

slab is studied in Sec. IV. Discussions and conclusions are
presented in Sec. V and Sec. IV, respectively.

II. PHYSICAL SYSTEM AND GREEN’S
FUNCTION METHOD

We consider a passive object that is small enough to be
represented by a passive dipole and place it in front of a
metamaterial slab, and we illuminate the system using an
external light source. The object has a dynamic dipole polar-
izability, α = i(3/2k3

0)a1, where k0 = ω/c with c as the speed
of light, and a1 is the electric term of the Mie’s coefficients.11

The slab is placed in the xy plane, and the external light
source is a dipole source placed vertically above the passive
object with a polarization along the y direction. The induced
dipole moment on the object is p0 = α(Eext

s + Eref
0 ), where

Eext
s = 4πk2

0Wtot · psrc is the external field due to the dipole
source in the presence of the slab, and Eref

0 = 4πk2
0Wref · p0 is

the reflected field from the slab due to the passive dipole itself.
Here, psrc is the external dipole source. Wtot is the dyadic
Green’s function, which takes into account the effect of the
slab, and Wref is the reflection part of the dyadic Green’s
function. Since the external dipole source is polarized along
the y direction, and both the active dipole and the passive object
are placed on the z axis, the nonzero component of the induced
dipole moment is also oriented in the y direction,

py = 4πk2
0

W tot
yy

α−1 − 4πk2
0W

ref
yy

psrc. (2.1)

We can define an effective polarizability along the
y direction,

α∗ = (
α−1 − 4πk2

0W
ref
yy

)−1
, (2.2)

which is the key to understanding the functionality of the slab.
We note that this source dipole configuration is arranged to
excite a dipole parallel to the slab through one principal
component (α∗ = α∗

yy) of the effective polarizability tensor. By
symmetry, α∗

xx = α∗
yy . The behaviors of α∗

yy will be discussed
in Sec. III. The other principal value of effective polarizability
tensor, α∗

zz, which corresponds to the excited dipole being
perpendicular to the slab, will also be discussed in an appendix,
and the results are qualitatively the same.
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As the field at the image point is E(ri) = α∗Wtot(ri ,ro) ·
Eext

s (ro), with ro and ri being the object position and image
position, respectively, the slab serves as a cloak if α∗ → 0.
The slab is potentially a lens if α∗ → α. The quality of the
image depends on the material parameters. From Eq. (2.2), we
find α∗ → 0 if W ref

yy diverges, while α∗ → α if W ref
yy → 0. The

explicit expressions for the Green’s functions can be found in
the literature.12 In particular, W ref

yy has the form:

W ref
yy = i

8π

∫ ∞

0

k//

k0z

dk//

(
RT Eei2k0zzd − k2

0z

k2
0

RT Mei2k0zzd

)
,

(2.3)

where RT E and RT M are the reflection coefficients of the slab,
with the form of

R = 2i
(
ζ 2 − 1

)
sin kzd

(ζ + 1)2 e−ikzd − (ζ − 1)2 eikzd
,

where ζ T E = kz

k0zμ
and ζ T M = kz

k0zε
, and k2

z + k2
// = εμk2

0 .12

III. THE CLOAKING AND IMAGING BEHAVIORS OF AN
ISOTROPIC METAMATERIAL SLAB

In this section, we will study the cloaking and imaging be-
haviors of an isotropic metamaterial slab in detail. The purpose
is to clarify the conceptually confusing, mathematically subtle,
and apparently contradictory notions of perfect lens and the
cloak. In Sec. III A, we will discuss the behaviors of the Green’s
function for the source dipole located on the z axis, with electric
field polarized parallel to the metamaterial slab. We will first
give the asymptotic behaviors of the effective polarizability α∗
in the following limits: (1) ε,μ �= −1,zd → 0, (2) ε = μ =
−1 + iδ,δ → 0, (3) ε = −1 + iδ,μ �= −1,δ → 0, and (4)
μ = −1 + iδ,ε �= −1,δ → 0. In Sec. III B, we will illustrate
the complex behavior of α∗

yy for various combinations of (x,δ).
Then we will give the asymptotic behaviors of W tran

yy,img for the
Veselago slab in the limit of δ → 0 in Sec. III C, in order to
study the image resolution of the image point.

A. Asymptotic behaviors of the effective polarizability

1. The limit ε,μ �= −1,zd → 0

We first consider the general cases in which ε and μ are not
both −1. Figures 1(a) and 1(b) show the computed values of
|α∗/α| with respect to the distance zd for two cases, namely,
ε = −2 + iδ,μ = −3 + iδ and ε = μ = 2 + iδ, with a few
values of δ. We see that as zd → 0, the slab will suppress
the dipole excitation (i.e., |α∗/α| → 0). This suppressing
phenomenon is found to be universal for any value of (ε,μ),
This can be seen from the asymptotic behavior of Eq. (2.3) for
small zd .

Let us consider the reflection coming from each k//

component. As zd approaches zero, the cloaking effect has
nothing to do with the propagating components k// � k0,
and the evanescent component will dominate. The reflection
coefficients approach to RT E → (μ−1)

μ+1 if k// >> 1
d

log |μ−1
μ+1 |.

Here, we define κ0 = C max{ 1
d

log |μ−1
μ+1 |, 1

d
log | ε−1

ε+1 |,√εμk0},
where the prefactor C is a constant much bigger than 1

FIG. 1. (Color online) The suppression of effective polarizability
(see text) as a function of zd/d , where d is the slab thickness and zd

is distance between the dipole and the slab. δ is the loss parameter.
The slab parameters are (a) Re(ε) = −2,Re(μ) = −3; (b) Re(ε) =
Re(μ) = 2; and (c) Re(ε) = Re(μ) = −1, and in this special case a
finite-size “suppression zone” of width d/2 emerges in the limit of
δ → 0.

(10 would be a very safe choice). We consider those
evanescent components with k// > κ0, in which k0z ∼
ik//, k// ≡ κ , RT E ∼ (μ − 1)/(μ + 1) ≡ RT E

lim , and RT M ∼
(ε − 1)/(ε + 1) ≡ RT M

lim . Hence, it yields

W ref
yy → 1

8π

∫ ∞

κ0

dκe−2κzd

[
RT E

lim + κ2

k2
0

RT M
lim

]

= 1

16π

[
RT E

lim

zd

+ RT M
lim

(
κ2

0

k2
0zd

+ κ0

k2
0z

2
d

+ 1

2k2
0z

3
d

)]

×e−2κ0zd . (3.1)

Equation (3.1) indicates that 4πk2
0W

ref
yy diverges as z−3

d as
zd approaches zero. It indicates that α∗ goes to zero smoothly
with a asymptotic form ∼z3

d , and a slab with ε,μ �= −1 has no
critical-distance cloaking effect. This universal result shows
that the reflection of the evanescent wave in the slab with
sufficiently large Fourier component, κ0, can suppress the
dipole excitation (α∗ → 0) completely as long as the object is
sufficiently close to the slab. This suppression effect occurs for
any material parameter value (except for when ε = μ = 1), but
the effect is stronger in negative-refractive-index slabs than in
positive-refractive-index slabs (with the same absolute values
of ε,μ) due to larger values of RT E

lim and RT M
lim .

2. The limit ε = μ = −1 + iδ,δ → 0

The suppression effect is strongest as ε,μ → −1, which
is a case requiring special treatment. We consider a finite
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value of the absorption parameter δ and consider in the limit
δ → 0. As shown in Fig. 1(c), there is a critical distance
of d/2 at which α∗ drops to zero abruptly when δ → 0. It
indicates that the Veselago slab behaves as a cloak with a
“suppression zone” of thickness d/2 as long as the absorption
is vanishingly small. This is the finite frequency analog of the
“anomalous resonance effect” first discovered by Nicorovici,
McPhedran, and Milton.5 Such a cloaking effect can be
analytically deduced from the asymptotic behavior of W ref

yy

for small δ.
Let us consider the reflection coming from each k//

component. For k// � k0, we have |R(k//)| � 2| 1−ζ 2

(1−ζ )2 |, which
implies lim

δ→0
|R(k//)| = 0. This implies that the cloaking effect

in the perfect lens has nothing to do with the propagating
components. For k// > k0, if δ is small, we have 1 − ζ 2 =
−2iδ

k2
//

k2
//−k2

0
+ O(δ2) and 1 + ζ = −iδ

k2
//

k2
//−k2

0
+ O(δ2). So if

k// 	 k0 (e.g., k// = 10k0), we have ζ ∼= −1 − iδ, and RT E =
RT M ∼ 2iδeκd

δ2eκd+4e−κd , where κ =
√

k2
// − εμk2

0. For any fixed δ,

we find when k// > (1/d) log(2/δ), R(k//) → 2i/δ. Hence, for
sufficiently large k//, the reflection of the evanescent wave
is very strong, and when we also take into account of the
factor e2ik0zzd , which is exponentially decaying for evanescent
components, the reflection mostly comes from large k// Fourier
components with its optimal value at k// ∼ |log δ|/d. It is
straightforward to show that the reflection due to evanescent
waves can be approximated as

W ref
yy ∼ 1

4π

∫ ∞

k0

dκ

[
iδeκdγ

δ2eκd + 4e−κd
+ κ2

k2
0

iδeκdγ

δ2eκd + 4e−κd

]

= i

4πdδγ

∫ ∞

δek0d

dx
xγ

x2 + 4

[
1 + (log x − log δ)2

k2
0d

2

]
.

(3.2)

Here, γ = 1 − 2zd/d and x = δeκd . Hence, as δ → 0, it
yields

W ref
yy → i

4πdδγ

[
I0 (γ )

(
1 + log2 δ

k2
0d

2

)

− 2
log δ

k2
0d

2
I1 (γ ) + I2 (γ )

k2
0d

2

]
, (3.3)

where In(γ ) = ∫ ∞
0

xγ logn x

x2+4 dx is a constant. Equation (3.3)
indicates that 4πk2

0W
ref
yy diverges if zd < d/2 whereas

4πk2
0W

ref
yy → 0 if zd > d/2 in the limit of zero absorption.

Figures 1(a) and 1(b) show that the suppression effect depends
only weakly on δ for general values of ε,μ. Figure 1(c) shows
that the case Re(ε) = Re(μ) = −1 is special in the sense that
the suppression effect is strongly dependent on δ, and a finite
“suppression zone” of zd = d/2 emerges in the limit of small
absorption.7

3. The limit ε = −1 + iδ,μ �= −1,δ → 0

When either ε or μ equals to −1, the suppression of
excitation is stronger than that when neither ε nor μ equals
to −1, but not as strong as that when both are equal to
−1. Specifically, it will be shown in the following that, for
ε = −1 + iδ, μ �= −1, α∗ smoothly approaches zero with an

asymptotic form of z5
d at a finite frequency. There is no critical

distance within which the excitation suddenly turns zero in the
limit δ → 0, but the suppression is stronger than that with any
other values of ε. However, in the quasistatic limit, there is a
“suppression zone” of d/2 in the limit δ → 0.

In case 3, we will focus on the reflection coefficient for TM

mode. We have ζ =
√

εμk2
0−k2

//

ε
√

k2
0−k2

//

and ζ 2 − 1 ∼= 2iδ + (μ+1)k2
0

k2
//

,

which lead to the following approximate expression of the
reflection coefficient for large k//(≡ κ):

RT M (κ) = − (
1 − ζ 2

)
(eikzd − e−ikzd )

(1 + ζ )2 e−ikzd − (1 − ζ )2 eikzd

∼= −
[
2iδ + (1+μ)k2

0
κ2

]
eκd[

iδ + (1+μ)k2
0

2κ2

]2
eκd − 4e−κd

. (3.4)

We first consider the limit k0 → 0. In this limit,
Eq. (3.4) becomes RT M (κ) = 2iδeκd

δ2eκd+4e−κd , which is the same
as a Veselago slab with absorption δ in a finite frequency
regime. Hence, we expect that the integral in W ref

yy diverges
as δ → 0 for zd < d/2. However, in this case, since k0 → 0,
it is better for us to examine the quantity 4πk2

0W
ref
yy (see the

expression of α∗
yy),

lim
k0→0

4πk2
0W

ref
yy → i

d3δγ
[I0(γ ) log2 δ − 2I1(γ ) log δ + I2(γ )].

(3.5)

We find that if zd < d/2, lim
k0→0

4πk2
0W

ref
yy diverges as δ → 0,

with the asymptotic form Cδ−γ log2 δ. This indicates that a slab
with ε = −1 + iδ,μ �= −1 can have a finite distance cloaking
effect in the quasistatic limit, with a critical distance d/2.

From Eq. (3.4), we know if

k0 <
√

2 (1/d) δ1/2 log (2/δ) /
√

1 + μ, (3.6)

we have RT M ∼= 2iδeκd

δ2eκd+4e−κd for all k// > (1/d) log(2/δ). In
this case, a slab with ε = −1 + iδ,μ �= −1 can have cloaking
effect similar to a Veselago slab, i.e., cloaking with a critical
distance d/2. Equation (3.6) shows the upper bound of the
working wavelength and gives the quantitative definition of
“quasistatic limit.” Note that the upper bound is related to
the slab thickness d and μ. In the perspective of Eq. (3.6),
the Veselago slab with μ → −1 corresponds to infinite upper
bound, so that the Veselago lens has critical cloaking effect for
arbitrary frequency.

We now consider the finite frequency regime and take
δ → 0. We have

RT M (κ) = −
(1+μ)k2

0
κ2 eκd[ (1+μ)k2

0
2κ2

]2
eκd − 4e−κd

.

If zd → 0, the integral related to TM mode in the 4πk2
0W

ref
yy

can be approximated as

f (zd ) − 1

16 (1 + μ) k2
0z

5
d

[
(2κ̃zd )4 + 4 (2κ̃zd )3 + 12 (2κ̃zd )2

+24 (2κ̃zd ) + 24

]
e−2κ̃zd ∼ 3

2 (1 + μ) k2
0z

5
d

e−2κ̃zd .

(3.7)
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Here κ̃ is a sufficient large value such that [ (1+μ)k2
0

2κ̃2 ]2eκ̃d 	
4e−κ̃d . In fact, due to the exponential factor, [ (1+μ)k2

0
2κ2 ]2eκd will

very quickly dominate as κ increase; therefore, κ̃ in general
need not to be very large. For example, if μ = −2, k0d = 1,

κ̃ = 7/d, [ (1+μ)k2
0

2κ̃2 ]2eκ̃d ∼ 40e−κ̃d .
Here

f (zd ) = −1

2
k2

0

∫ κ̃

k0

(1 + μ) eκ(d−2zd )[ (1+μ)k2
0

2κ2

]2
eκd − 4e−κd

dκ,

which is finite when zd → 0 (|f (zd )| < |f (0)|). Hence,
we have W ref

yy ∼ C/z5
d as zd → 0. Therefore, in the finite

frequency regime beyond the quasistatic regime, a slab with
ε = −1 + iδ,μ �= −1 does not exhibit the critical-distance
cloaking effect, but the suppression effect is much stronger
than ε,μ �= −1.

4. The limit μ = −1 + iδ,ε �= −1,δ → 0

For μ = −1 + iδ, ε �= −1, we will show that α∗ smoothly
approaches zero with an asymptotic form of z3

d so that the
suppression is not as strong as that in the case of ε = −1 +
iδ,μ �= −1.

First we consider the limit k0 → 0. Similar to case 3, when
zd < d/2 and δ → 0, W ref

yy will diverge with the asymptotic
form of

W ref
yy → i

4πdδγ
I0 (γ )

+ 1

16π
RT M

lim

(
κ2

0

k2
0zd

+ κ0

k2
0z

2
d

+ 1

2k2
0z

3
d

)
e−2κ0zd .

However, 4πk2
0W

ref
yy does not diverge if k0 → 0.

If k0 satisfies the quasistatic limit condition k0 <√
2(1/d)δ1/2 log(2/δ)/

√
1 + ε, we have

4πk2
0W

ref
yy → 2iδ2zd/d

(1 + ε) d3
I0 (γ ) log2 (2/δ)

+1

4
RT M

lim

(
κ2

0

zd

+ κ0

z2
d

+ 1

2z3
d

)
e−2κ0zd . (3.8)

The first term of Eq. (3.8) goes to zero as δ → 0, and hence
4πk2

0W
ref
yy remains finite (equal to the second term) if zd �= 0

when δ → 0, i.e., α∗ goes to zero smoothly as zd → 0 (the
asymptotic behaviors is ∼Cz3

d ). Therefore, there is no critical
distance for μ = −1 + iδ,ε �= −1 in the quasistatic limit.

Now consider the finite frequency and δ → 0. If zd →
0, the integral related to TE mode in the 4πk2

0W
ref
yy can be

approximated as

g (zd ) − e−2κ̃zd

4 (1 + ε) z3
d

[
(2κ̃zd )2 + 2 (2κ̃zd ) + 2

] ∼ −ie−2κ̃zd

2 (1 + ε) z3
d

,

where κ̃ has the same definition as Eq. (3.7), and

g (zd ) = −1

2
k2

0

∫ κ̃

k0

(1+ε)k2
0

κ2 eκ(d−2zd )[ (1+ε)k2
0

2κ2

]2
eκd − 4e−κd

dκ,

which is finite when zd → 0 (|g(zd )| < |g(0)|). Hence,
we note that the asymptotic behavior is 4πk2

0W
ref
yy ∼ C/z3

d .
Therefore, a slab with μ = −1 + iδ,ε �= −1 does not have a
critical-distance cloaking effect.

B. Behavior of the effective polarizability for the parameter
space of (x,δ)

To further illustrate the complex behavior of α∗ at a finite
distance of zd for different material parameters (ε = μ = x +
iδ), we compute α∗ numerically for various combinations of
(x,δ), as shown in Fig. 2. The object is placed at a distance
zd = d/5 from the slab. We see that the color coding is mostly
“orange,” which means that |α∗/α| is approximately equal to
one in most of the cases, so that the metamaterial slab does not
cloak and would behave more or less as a lens if the refractive
index is negative. But for some particular values of (x,δ) in
which the color is “black,” the value of |α∗/α| is small, and
the slab behaves as a cloak. Figure 3 plots the relationship
between |α∗/α| and x at different values of zd for a fixed small
loss of δ = 10−5. We can see that |α∗/α| ∼ 1 no matter what
the value of x is if the dipole object is far from the slab (the
black curve), showing the absence of cloaking. This is true for
all zd > d/2. However, if the object is moved very close to
the slab, |α∗/α| decreases significantly for any value of x [the
red (dark gray) curve], indicating the suppression of the dipole
excitation by the metamaterial slab. While the suppression is
strongest at x = −1, there are other values of x that would give
fairly strong suppression [see the dips in the green (light gray)
and red (dark gray) curves].

A careful analysis shows that there are two distinct mecha-
nisms behind the suppression of α∗. We note from Eq. (2.3) that
both the propagating and evanescent components contribute
to reflections. When the dipole is relatively far away from
the slab, since the evanescent components (k// > k0) decay
spatially [due to the ei2k0zzd factor in Eq. (2.3)], the suppression
is mainly attributed to the propagating components (k// < k0).
We find that the reflection coefficient, R, takes its optimal val-
ues when sin kzd ∼ ±1, i.e.,

√
εμk0d ∼ (2n + 1)π/2, where

n is an integer. This causes the Fabry-Perot resonance of
α∗ at some particular values of x ∼ (λ/d)(2n + 1)/4, in the
limit of large |x|. We note that for the relatively large values
of zd , large phase differences (ei2k0zzd ) will cause different
propagating components to cancel each other. This explains
why the resonant behaviors are stronger on the green (light
gray) and red (dark gray) curves than on the black curve.

FIG. 2. (Color online) The effective polarizability for a dipole
positioned at zd = d/5 in front of a slab with ε = μ = x + iδ,
thickness d , and k0d = 6π . Black indicates strong suppression of
excitation.
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FIG. 3. (Color online) The effective polarizability as a function of
the real part of the permittivity of the slab with δ = 10−5 and different
values of zd .

While the Fabry-Perot resonance can cause suppression, it
cannot bring |α∗/α| to exactly zero. For example, we see from
Fig. 4(a) that at Re(ε) = Re(μ) = x = −1.953132, |α∗/α|
reaches a very small value, but it remains finite for any value of
absorption. This is because R for k// <

√
εμk0 is always of the

order of unity. This implies that the suppression effect due to
the propagating waves can give only a partial suppression. The
complete cloaking effect is due to the strong reflection of the
evanescent waves. When the object is moved closer to the slab,
the large evanescent components (k// >

√
εμk0) are expected

to become more dominant, leading to stronger suppression of
α∗. One can see that R approaches a constant RT E

lim for TE
mode (and RT M

lim for TM mode) for k// > 1
d

log | x−1
x+1 |. It yields

| α∗
α

| ∼ C| x−1
x+1 |, where C is a constant that becomes smaller

as zd decreases. This is exactly the profile of the red (dark
gray) curve in Fig. 3. The suppression effect is the strongest at
x = −1, which corresponds to the Veselago slab. Figure 4(b)
shows the numerical results near x = −1 at finite zd . It can be

FIG. 4. (Color online) The effective polarizability as a function of
the imaginary part of the permittivity of the slab with different values
of Re(ε) = Re(μ) = x and zd = d/5. The imaging and cloaking
properties of the metamaterial slab for some configurations are
demonstrated in Fig. 5.

seen that the value of |α∗/α| at x = −1 is much smaller than
those near x = −1 as the loss goes to zero.13

Figures 5 shows the field distributions for some par-
ticular configurations with a value of δ = 10−7, in order
to highlight the cloaking versus imaging effect. Using the
Green’s function method, the electric field at R can be writ-
ten as Ey(R) = ω2μ0[W tot

yy,R + α∗4πk2
0W

tran
yy,RW tot

yy,dipole]psrc,
where W tot

yy,R (W tot
yy,dipole) represents the yy element of the total

Green’s function radiated at R (the passive dipole) by the
external source, and W tran

yy,R represents the Green’s function
radiated at R by the dipole object.12 The color stands for
log(|Etot|). The source (psrc) is placed at 3d to the left of
the slab. It can be clearly seen that the partial cloaking and
imaging effect when the “dipole” object (black dot) is at a
distance zd = d/5 in front of the metamaterial slab.

C. Image resolution in the image point

The transmission part of the dyadic Green’s function in the
image point is12

4πk2
0W

tran
yy,img = ik2

0

2

∞∫
0

k//

k0z

dk//

(
T T E + k2

0z

k2
0

T T M

)
ei2k0zd ,

(3.9)

where

T = 4ζe−ikzde−ik0zd

(ζ + 1)2 e−i2kzd − (ζ − 1)2 .

For k// � k0, we have lim
δ→0

|T (k//)e2ik0zd | = lim
δ→0

4| ζ

(1−ζ )2 | = 1.

The propagating modes should have a transfer function of
∼1, but as α∗ → 0, the propagating modes cannot provide
any intensity for image formation. The evanescent modes
with k// > k0 is more subtle. If δ is small, we have T T E =
T T M ∼ 4eκd

δ2eκd+4e−κd , where κ =
√

k2
// − εμk2

0 . For any fixed

δ, we find when k// > (1/d) log(2/δ), T (k//) → 4/δ2. As
T (k//) is capped by 4/δ2, T (k//)e2ik0zd actually drops to zero
for sufficiently big values k//(k// > (1/d) log(2/δ)) due to
the exponential factor e2ik0zd . We note that T (k//)e2ik0zd = 1
for all k// if we simply put δ = 0 in the calculations without

FIG. 5. (Color online) (a) Partial cloaking and (b) imag-
ing/scattering effect when the “dipole” object (black dot) is at a
distance zd = d/5 in front of the metamaterial slab (between solid
lines). (a) and (b) Corresponding to the black (solid) and red (dash)
curves, respectively, in Fig. 4(a).
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considering the limit carefully. Mathematically, the transmis-
sion due to evanescent waves can be approximated as

2k2
0

1

d

[
I ′

0

(
1 + log2 δ

k2
0d

2

)
− 2

log δ

k2
0d

2
I ′

1 + I ′
2

k2
0d

2

]
,

where

I ′
n =

∫ ∞

δek0d

logn x

x
(
x2 + 4

)dx ∼ 1

4

∫ ∞

δek0d

logn xd (log x)

∼ − logn+1 δ

4 (n + 1)
.

Here I ′
n contributes a logn+1 δ divergence as δ → 0. We note

that when zd < d
2 , 4πk2

0W
ref
yy is divergent as δ → 0, and it is

more divergent than 4πk2
0W

tran
yy,img. As α∗ ∼ (4πk2

0W
ref
yy )−1, we

find lim
δ→0

α∗4πk2
0W

tran
yy,img → 0. It means that evanescent waves

also cannot contribute to any intensity at the image point. It
indicates that in the pursuit of an ideal superlens, the image
will approach perfect resolution, but it has zero brightness.

IV. CLOAKING EFFECT FOR “FOLDED GEOMETRY”
SLAB

The next question is whether the Veselago slab is unique
in the sense that it has a finite size “suppression zone.” We
find that suppression zones can also occur in other negative
index slabs if we allow anisotropy. From the point of view
of transformation optics,14 negative refractive index material
parameters correspond to a “folded geometry” coordinate
transformation9,10 with a negative slope that maps a single
point in the electromagnetic space (z′) to multiple points in
the physical space (z). This kind of mapping corresponds to
ε = μ = diag( dz′

dz
, dz′

dz
, dz
dz′ ) in the physical space. The mapping

dz′/dz = −1 gives the perfect lens. In general, a slab with
ε = μ = diag(−β, − β, − 1/β), where β > 0, corresponds
to the mapping dz′/dz = −β inside the lens and dz′/dz = 1
outside the lens. In such a “folded geometry” slab, we have

R = −[1 − ζ 2](eikzd − e−ikzd )

(1 + ζ )2 e−ikzd − (1 − ζ )2 eikzd
, (4.1)

where ζ =
√

μxεyω2/c2−k2
xμx/μz

μx

√
ω2/c2−k2

x

for TE mode and ζ =
√

μyεxω2/c2−k2
xεx/εz

εx

√
ω2/c2−k2

x

for TM mode. For large kx(≡ κ), we have

kz ∼ iβκ , and

RT E = RT M ∼ 2iδ[eβκd − e−βκd ]

δ2eβκd + 4e−βκd
,

which is the same as a Veselago lens of thickness βd. Therefore
the cloaking effect also occurs in such slabs with a critical
cloaking distance zd = βd/2, which can tuned to be as large as
we like. Here we numerically demonstrate the cloaking effect
(for a two-dimensional system) calculated by the COMSOL
package. The cylindrical object (r = 0.005d,ε = 480) is
placed at a distance zd = d/2 and zd = 5d/4 in front of
an anisotropic slab with material parameters εy = −2,μz =
−0.5,μx = −2, and illuminated by a Gaussian beam with
λ = 0.125d and the waist size of 0.125d. We see that the

FIG. 6. (Color online) The “dipole” object (black dot) is
(a) cloaked or (b) imaged by an anisotropic “folded geometry” slab.

object can be cloaked [Fig. 6(a)] or imaged [Fig. 6(b)] by the
slab depending on whether is it within or outside zd = βd/2.

V. DISCUSSION

We also note that the critical distance cloaking effect
is mainly attributed to large k// components and occurs at
(x,δ) → (−1,0). In experimentally realizable metamaterials,
the absorption is not that small, and there is always some
deviation from the exact value of x = −1. As the building
blocks of metamaterials are discrete, there is always a cutoff in
the parallel component of the wavevector. Hence most perfect
lens experiments should observe the imaging effect. But in the
limit of an ideal ε = μ = −1 Veselago slab with infinitesimal
loss, the image for a small object should have zero brightness if
it is placed within d/2 of the slab. We also note that our results
do not contradict the concept of “complementary media.”3 If
there is absorption in the perfect lens (e.g., ε = μ = −1 + iδ),
a layer of air with “anti-absorption” (i.e., ε = μ = 1 − iδ)
is required to maintain symmetry, and the pair of ε = μ =
[−1 + iδ, 1 − iδ] does function as a perfect lens for any finite
value of δ.

VI. CONCLUSION

In conclusion, we have investigated the imaging/cloaking
condition of a small object in front of a metamaterial slab
with arbitrary values of (ε,μ). The dipole excitation of a small
object can be suppressed if it is placed sufficiently close to the
slab. The suppression is strongest for “folded geometry” slabs,
which have finite suppression zones of width βd/2 in the limit
of zero absorption.
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APPENDIX A: ASYMPTOTIC BEHAVIORS OF W ref
zz

In this appendix, we will discuss the cloaking effect if
the source dipole is polarized perpendicular to the slab.
This corresponds to the principal value of effective polar-
izability tensor, α∗

zz, while the main text corresponds to
α∗

yy = α∗
xx . We will see that the results in the appendix

are qualitatively the same as the case in the main text.
In this appendix we should consider the excitation of the
perpendicular component of the Green’s function, which is
given by

4πk2
0W

ref
zz = i

∫ ∞

0

k3
//

k0z

dk//R
T Me2ik0zzd . (A1)

1. The limit ε = −1 + iδ, μ = −1

In this case, we have lim
δ→0

4πk2
0W

ref
zz →

2i
d3δγ [I0(γ ) log2 δ − 2I1(γ ) log δ + I2(γ )]. We find that
if zd < d/2, lim

δ→0
4πk2

0W
ref
zz diverges as δ → 0, with

the asymptotic form Cδ−γ log2 δ. This indicates that it
can have finite distance cloaking effect with a critical
distance d/2.

2. The limit ε = −1 + iδ, μ �= −1

We first consider the limit k0 → 0. In this limit, 4πk2
0W

ref
zz

has the same asymptotic form as that of μ = −1. So a slab
with ε = −1 + iδ,μ �= −1 can have finite distance cloaking
effect in the quasistatic limit, with a critical distance d/2. Now
we turn to consider finite frequency, zero absorption limit, we
should have the asymptotic form of

RT M (κ) = −
(1+μ)k2

0
κ2 eκd[ (1+μ)k2

0
2κ2

]2
eκd − 4e−κd

.

If zd → 0, 4πk2
0W

ref
zz have the following asymptotic form:

2f (zd ) − 1

8 (1 + μ) k2
0z

5
d

[(2κ̃zd )4 + 4 (2κ̃zd )3 + 12 (2κ̃zd )2

+ 24 (2κ̃zd ) + 24]e−2κ̃zd ∼ 3

(1 + μ) k2
0z

5
d

e−2κ̃zd ,

(A2)

where the definitions of f (zd ) and κ̃ are the same in the text.
Hence, we have W ref

zz ∼ C/z5
d as zd → 0. Therefore, in the

frequency regime, a slab with ε = −1 + iδ,μ �= −1 does not
have a critical cloaking distance.

3. The limit ε �= −1

In this case, we have, 4πk2
0W

ref
zz → 1

8z3
d

RT M
lim[

(2κ0zd )2 + 2 (2κ0zd ) + 2
]
e−2κ0zd ∼ C/z3

d . Here we define
κ0 = C max{(1/d) log |(ε − 1) / (ε + 1)| ,√εμk0}, where the
prefactor C is a constant much bigger than 1. Therefore, a slab
with ε �= −1 does not have critical-distance cloaking effect.

APPENDIX B: ASYMPTOTIC BEHAVIORS OF W tran
zz,img

(ε = μ = −1 + δ,δ → 0)

We employ the similar procedures as those in Sec. III C. As
δ → 0, the asymptotic behavior of W tran

zz,img is

4πk2
0W

tran
zz,img = i

∫ ∞

0

k3
//

k0z

dk//T
T Me2ik0zd

∼ 4

d3

(
I ′

0 log2 δ − 2I ′
1 log δ + I ′

2

)
. (B1)

As 4πk2
0W

ref
zz is more divergent than 4πk2

0W
tran
zz,img as δ → 0

when the dipole is placed with d/2 of the slab, and as
α∗ ∼ (4πk2

0W
ref
zz )−1, we find that lim

δ→0
α∗4πk2

0W
tran
zz,img → 0.

The image of the dipole will have has zero brightness in the
limit of no absorption in the lens.
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